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Wikipedia: Neural-Symbolic AI

Neuro-symbolic AI
Neuro-symbolic AI integrates neural and symbolic AI architectures to address complementary strengths
and weaknesses of each, providing a robust AI capable of reasoning, learning, and cognitive modeling. As
argued by Valiant[1] and many others,[2] the effective construction of rich computational cognitive models
demands the combination of sound symbolic reasoning and efficient machine learning models. Gary
Marcus, argues that: "We cannot construct rich cognitive models in an adequate, automated way without
the triumvirate of hybrid architecture, rich prior knowledge, and sophisticated techniques for reasoning."[3].
Further, "To build a robust, knowledge-driven approach to AI we must have the machinery of symbol-
manipulation in our toolkit. Too much of useful knowledge is abstract to make do without tools that
represent and manipulate abstraction, and to date, the only machinery that we know of that can manipulate
such abstract knowledge reliably is the apparatus of symbol-manipulation."[4]

Henry Kautz,[5] Francesca Rossi,[6] and Bart Selman[7] have also argued for a synthesis. Their arguments
are based on a need to address the two kinds of thinking discussed in Daniel Kahneman's book, Thinking
Fast and Slow. Kahneman describes human thinking as having two components, System 1 and System 2.
System 1 is fast, automatic, intuitive and unconscious. System 2 is slower, step-by-step, and explicit.
System 1 is used for pattern recognition. System 2 handles planning, deduction, and deliberative thinking.
In this view, deep learning best handles the first kind of cognition while symbolic reasoning best handles
the second kind. Both are needed for a robust, reliable AI that can learn, reason, and interact with humans
to accept advice and answer questions.

Kinds of approaches
As a prerequisite for artificial general intelligence
History
Open research questions
Implementations
Citations
References
See also
External links

Approaches for integration are varied. Henry Kautz’s taxonomy of neuro-symbolic architectures, along
with some examples, follows:

Symbolic Neural symbolic—is the current approach of many neural models in natural
language processing, where words or subword tokens are both the ultimate input and output
of large language models. Examples include BERT, RoBERTa, and GPT-3.

Contents
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Wikipedia: Neural-Symbolic AI: Kinds of approaches

Neuro-symbolic AI
Neuro-symbolic AI integrates neural and symbolic AI architectures to address complementary strengths
and weaknesses of each, providing a robust AI capable of reasoning, learning, and cognitive modeling. As
argued by Valiant[1] and many others,[2] the effective construction of rich computational cognitive models
demands the combination of sound symbolic reasoning and efficient machine learning models. Gary
Marcus, argues that: "We cannot construct rich cognitive models in an adequate, automated way without
the triumvirate of hybrid architecture, rich prior knowledge, and sophisticated techniques for reasoning."[3].
Further, "To build a robust, knowledge-driven approach to AI we must have the machinery of symbol-
manipulation in our toolkit. Too much of useful knowledge is abstract to make do without tools that
represent and manipulate abstraction, and to date, the only machinery that we know of that can manipulate
such abstract knowledge reliably is the apparatus of symbol-manipulation."[4]

Henry Kautz,[5] Francesca Rossi,[6] and Bart Selman[7] have also argued for a synthesis. Their arguments
are based on a need to address the two kinds of thinking discussed in Daniel Kahneman's book, Thinking
Fast and Slow. Kahneman describes human thinking as having two components, System 1 and System 2.
System 1 is fast, automatic, intuitive and unconscious. System 2 is slower, step-by-step, and explicit.
System 1 is used for pattern recognition. System 2 handles planning, deduction, and deliberative thinking.
In this view, deep learning best handles the first kind of cognition while symbolic reasoning best handles
the second kind. Both are needed for a robust, reliable AI that can learn, reason, and interact with humans
to accept advice and answer questions.
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Approaches for integration are varied. Henry Kautz’s taxonomy of neuro-symbolic architectures, along
with some examples, follows:

Symbolic Neural symbolic—is the current approach of many neural models in natural
language processing, where words or subword tokens are both the ultimate input and output
of large language models. Examples include BERT, RoBERTa, and GPT-3.
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Symbolic[Neural]—is exemplified by AlphaGo, where symbolic techniques are used to call
neural techniques. In this case the symbolic approach is Monte Carlo tree search and the
neural techniques learn how to evaluate game positions.
Neural|Symbolic—uses a neural architecture to interpret perceptual data as symbols and
relationships that are then reasoned about symbolically. The Neural-Concept Learner[8] is
an example.
Neural:Symbolic → Neural—relies on symbolic reasoning to generate or label training
data that is subsequently learned by a deep learning model, e.g., to train a neural model for
symbolic computation by using a Macsyma-like symbolic mathematics system to create or
label examples.
Neural_{Symbolic}—uses a neural net that is generated from symbolic rules. An example is
the Neural Theorem Prover,[9] which constructs a neural network from an AND-OR proof tree
generated from knowledge base rules and terms. Logic Tensor Networks[10] also fall into this
category.
Neural[Symbolic]—allows a neural model to directly call a symbolic reasoning engine, e.g.,
to perform an action or evaluate a state.

These categories are not exhaustive, for example, they do not consider multi-agent systems. In 2005, Bader
and Hitzler presented a more fine-grained categorization that considered, e.g., whether the use of symbols
included logic or not, and if it did, whether the logic was propositional or first-order logic.[11] The 2005
categorization and Kautz' taxonomy above are compared and contrasted in a 2021 article.[12]

Gary Marcus argues that "…hybrid architectures that combine learning and symbol manipulation are
necessary for robust intelligence, but not sufficient",[13] and that there are:

"...four cognitive prerequisites for building robust artificial intelligence:

hybrid architectures that combine large-scale learning with the representational and
computational powers of symbol-manipulation,
large-scale knowledge bases—likely leveraging innate frameworks—that incorporate
symbolic knowledge along with other forms of knowledge,
reasoning mechanisms capable of leveraging those knowledge bases in tractable ways,
and

rich cognitive models that work together with those mechanisms and knowledge bases."[14]

This echoes the earlier call for hybrid models in the 1990s.

Garcez describes research in this area as being ongoing for at least the past twenty years,[15] dating from his
2002 book on neuro-symbolic learning systems.[16] A series of workshops on neuro-symbolic reasoning
called the Workshop Series on Neural-Symbolic Learning and Reasoning has been held every year since
2005. In fact, the idea dates back to the late 1980s and early 1990s, when the first series of workshops on
this topic occurred.

As a prerequisite for artificial general intelligence

History

Open research questions
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Hinton的观点
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Machine-learning technology powers many aspects of modern 
society: from web searches to content filtering on social net-
works to recommendations on e-commerce websites, and 

it is increasingly present in consumer products such as cameras and 
smartphones. Machine-learning systems are used to identify objects 
in images, transcribe speech into text, match news items, posts or 
products with users’ interests, and select relevant results of search. 
Increasingly, these applications make use of a class of techniques called 
deep learning. 

Conventional machine-learning techniques were limited in their 
ability to process natural data in their raw form. For decades, con-
structing a pattern-recognition or machine-learning system required 
careful engineering and considerable domain expertise to design a fea-
ture extractor that transformed the raw data (such as the pixel values 
of an image) into a suitable internal representation or feature vector 
from which the learning subsystem, often a classifier, could detect or 
classify patterns in the input. 

Representation learning is a set of methods that allows a machine to 
be fed with raw data and to automatically discover the representations 
needed for detection or classification. Deep-learning methods are 
representation-learning methods with multiple levels of representa-
tion, obtained by composing simple but non-linear modules that each 
transform the representation at one level (starting with the raw input) 
into a representation at a higher, slightly more abstract level. With the 
composition of enough such transformations, very complex functions 
can be learned. For classification tasks, higher layers of representation 
amplify aspects of the input that are important for discrimination and 
suppress irrelevant variations. An image, for example, comes in the 
form of an array of pixel values, and the learned features in the first 
layer of representation typically represent the presence or absence of 
edges at particular orientations and locations in the image. The second 
layer typically detects motifs by spotting particular arrangements of 
edges, regardless of small variations in the edge positions. The third 
layer may assemble motifs into larger combinations that correspond 
to parts of familiar objects, and subsequent layers would detect objects 
as combinations of these parts. The key aspect of deep learning is that 
these layers of features are not designed by human engineers: they 
are learned from data using a general-purpose learning procedure. 

Deep learning is making major advances in solving problems that 
have resisted the best attempts of the artificial intelligence commu-
nity for many years. It has turned out to be very good at discovering 

intricate structures in high-dimensional data and is therefore applica-
ble to many domains of science, business and government. In addition 
to beating records in image recognition1–4 and speech recognition5–7, it 
has beaten other machine-learning techniques at predicting the activ-
ity of potential drug molecules8, analysing particle accelerator data9,10, 
reconstructing brain circuits11, and predicting the effects of mutations 
in non-coding DNA on gene expression and disease12,13. Perhaps more 
surprisingly, deep learning has produced extremely promising results 
for various tasks in natural language understanding14, particularly 
topic classification, sentiment analysis, question answering15 and lan-
guage translation16,17. 

We think that deep learning will have many more successes in the 
near future because it requires very little engineering by hand, so it 
can easily take advantage of increases in the amount of available com-
putation and data. New learning algorithms and architectures that are 
currently being developed for deep neural networks will only acceler-
ate this progress. 

Supervised learning 
The most common form of machine learning, deep or not, is super-
vised learning. Imagine that we want to build a system that can classify 
images as containing, say, a house, a car, a person or a pet. We first 
collect a large data set of images of houses, cars, people and pets, each 
labelled with its category. During training, the machine is shown an 
image and produces an output in the form of a vector of scores, one 
for each category. We want the desired category to have the highest 
score of all categories, but this is unlikely to happen before training. 
We compute an objective function that measures the error (or dis-
tance) between the output scores and the desired pattern of scores. The 
machine then modifies its internal adjustable parameters to reduce 
this error. These adjustable parameters, often called weights, are real 
numbers that can be seen as ‘knobs’ that define the input–output func-
tion of the machine. In a typical deep-learning system, there may be 
hundreds of millions of these adjustable weights, and hundreds of 
millions of labelled examples with which to train the machine. 

To properly adjust the weight vector, the learning algorithm com-
putes a gradient vector that, for each weight, indicates by what amount 
the error would increase or decrease if the weight were increased by a 
tiny amount. The weight vector is then adjusted in the opposite direc-
tion to the gradient vector. 

The objective function, averaged over all the training examples, can 

Deep learning allows computational models that are composed of multiple processing layers to learn representations of 
data with multiple levels of abstraction. These methods have dramatically improved the state-of-the-art in speech rec-
ognition, visual object recognition, object detection and many other domains such as drug discovery and genomics. Deep 
learning discovers intricate structure in large data sets by using the backpropagation algorithm to indicate how a machine 
should change its internal parameters that are used to compute the representation in each layer from the representation in 
the previous layer. Deep convolutional nets have brought about breakthroughs in processing images, video, speech and 
audio, whereas recurrent nets have shone light on sequential data such as text and speech. 

Deep learning
Yann LeCun1,2, Yoshua Bengio3 & Geoffrey Hinton4,5
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context of earlier words71. Each word in the context is presented to 
the network as a one-of-N vector, that is, one component has a value 
of 1 and the rest are 0. In the first layer, each word creates a different 
pattern of activations, or word vectors (Fig. 4). In a language model, 
the other layers of the network learn to convert the input word vec-
tors into an output word vector for the predicted next word, which 
can be used to predict the probability for any word in the vocabulary 
to appear as the next word. The network learns word vectors that 
contain many active components each of which can be interpreted 
as a separate feature of the word, as was first demonstrated27 in the 
context of learning distributed representations for symbols. These 
semantic features were not explicitly present in the input. They were 
discovered by the learning procedure as a good way of factorizing 
the structured relationships between the input and output symbols 
into multiple ‘micro-rules’. Learning word vectors turned out to also 
work very well when the word sequences come from a large corpus 
of real text and the individual micro-rules are unreliable71. When 
trained to predict the next word in a news story, for example, the 
learned word vectors for Tuesday and Wednesday are very similar, as 
are the word vectors for Sweden and Norway. Such representations 
are called distributed representations because their elements (the 
features) are not mutually exclusive and their many configurations 
correspond to the variations seen in the observed data. These word 
vectors are composed of learned features that were not determined 
ahead of time by experts, but automatically discovered by the neural 
network. Vector representations of words learned from text are now 
very widely used in natural language applications14,17,72–76. 

The issue of representation lies at the heart of the debate between 
the logic-inspired and the neural-network-inspired paradigms for 
cognition. In the logic-inspired paradigm, an instance of a symbol is 
something for which the only property is that it is either identical or 
non-identical to other symbol instances. It has no internal structure 
that is relevant to its use; and to reason with symbols, they must be 
bound to the variables in judiciously chosen rules of inference. By 
contrast, neural networks just use big activity vectors, big weight 
matrices and scalar non-linearities to perform the type of fast ‘intui-
tive’ inference that underpins effortless commonsense reasoning. 

Before the introduction of neural language models71, the standard 
approach to statistical modelling of language did not exploit distrib-
uted representations: it was based on counting frequencies of occur-
rences of short symbol sequences of length up to N (called N-grams). 
The number of possible N-grams is on the order of VN, where V is 
the vocabulary size, so taking into account a context of more than a 

handful of words would require very large training corpora. N-grams 
treat each word as an atomic unit, so they cannot generalize across 
semantically related sequences of words, whereas neural language 
models can because they associate each word with a vector of real 
valued features, and semantically related words end up close to each 
other in that vector space (Fig. 4). 

Recurrent neural networks 
When backpropagation was first introduced, its most exciting use was 
for training recurrent neural networks (RNNs). For tasks that involve 
sequential inputs, such as speech and language, it is often better to 
use RNNs (Fig. 5). RNNs process an input sequence one element at a 
time, maintaining in their hidden units a ‘state vector’ that implicitly 
contains information about the history of all the past elements of 
the sequence. When we consider the outputs of the hidden units at 
different discrete time steps as if they were the outputs of different 
neurons in a deep multilayer network (Fig. 5, right), it becomes clear 
how we can apply backpropagation to train RNNs. 

RNNs are very powerful dynamic systems, but training them has 
proved to be problematic because the backpropagated gradients 
either grow or shrink at each time step, so over many time steps they 
typically explode or vanish77,78. 

Thanks to advances in their architecture79,80 and ways of training 
them81,82, RNNs have been found to be very good at predicting the 
next character in the text83 or the next word in a sequence75, but they 
can also be used for more complex tasks. For example, after reading 
an English sentence one word at a time, an English ‘encoder’ network 
can be trained so that the final state vector of its hidden units is a good 
representation of the thought expressed by the sentence. This thought 
vector can then be used as the initial hidden state of (or as extra input 
to) a jointly trained French ‘decoder’ network, which outputs a prob-
ability distribution for the first word of the French translation. If a 
particular first word is chosen from this distribution and provided 
as input to the decoder network it will then output a probability dis-
tribution for the second word of the translation and so on until a 
full stop is chosen17,72,76. Overall, this process generates sequences of 
French words according to a probability distribution that depends on 
the English sentence. This rather naive way of performing machine 
translation has quickly become competitive with the state-of-the-art, 
and this raises serious doubts about whether understanding a sen-
tence requires anything like the internal symbolic expressions that are 
manipulated by using inference rules. It is more compatible with the 
view that everyday reasoning involves many simultaneous analogies 

Figure 4 | Visualizing the learned word vectors. On the left is an illustration 
of word representations learned for modelling language, non-linearly projected 
to 2D for visualization using the t-SNE algorithm103. On the right is a 2D 
representation of phrases learned by an English-to-French encoder–decoder 
recurrent neural network75. One can observe that semantically similar words 

or sequences of words are mapped to nearby representations. The distributed 
representations of words are obtained by using backpropagation to jointly learn 
a representation for each word and a function that predicts a target quantity 
such as the next word in a sequence (for language modelling) or a whole 
sequence of translated words (for machine translation)18,75.
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Machine-learning technology powers many aspects of modern 
society: from web searches to content filtering on social net-
works to recommendations on e-commerce websites, and 

it is increasingly present in consumer products such as cameras and 
smartphones. Machine-learning systems are used to identify objects 
in images, transcribe speech into text, match news items, posts or 
products with users’ interests, and select relevant results of search. 
Increasingly, these applications make use of a class of techniques called 
deep learning. 

Conventional machine-learning techniques were limited in their 
ability to process natural data in their raw form. For decades, con-
structing a pattern-recognition or machine-learning system required 
careful engineering and considerable domain expertise to design a fea-
ture extractor that transformed the raw data (such as the pixel values 
of an image) into a suitable internal representation or feature vector 
from which the learning subsystem, often a classifier, could detect or 
classify patterns in the input. 

Representation learning is a set of methods that allows a machine to 
be fed with raw data and to automatically discover the representations 
needed for detection or classification. Deep-learning methods are 
representation-learning methods with multiple levels of representa-
tion, obtained by composing simple but non-linear modules that each 
transform the representation at one level (starting with the raw input) 
into a representation at a higher, slightly more abstract level. With the 
composition of enough such transformations, very complex functions 
can be learned. For classification tasks, higher layers of representation 
amplify aspects of the input that are important for discrimination and 
suppress irrelevant variations. An image, for example, comes in the 
form of an array of pixel values, and the learned features in the first 
layer of representation typically represent the presence or absence of 
edges at particular orientations and locations in the image. The second 
layer typically detects motifs by spotting particular arrangements of 
edges, regardless of small variations in the edge positions. The third 
layer may assemble motifs into larger combinations that correspond 
to parts of familiar objects, and subsequent layers would detect objects 
as combinations of these parts. The key aspect of deep learning is that 
these layers of features are not designed by human engineers: they 
are learned from data using a general-purpose learning procedure. 

Deep learning is making major advances in solving problems that 
have resisted the best attempts of the artificial intelligence commu-
nity for many years. It has turned out to be very good at discovering 

intricate structures in high-dimensional data and is therefore applica-
ble to many domains of science, business and government. In addition 
to beating records in image recognition1–4 and speech recognition5–7, it 
has beaten other machine-learning techniques at predicting the activ-
ity of potential drug molecules8, analysing particle accelerator data9,10, 
reconstructing brain circuits11, and predicting the effects of mutations 
in non-coding DNA on gene expression and disease12,13. Perhaps more 
surprisingly, deep learning has produced extremely promising results 
for various tasks in natural language understanding14, particularly 
topic classification, sentiment analysis, question answering15 and lan-
guage translation16,17. 

We think that deep learning will have many more successes in the 
near future because it requires very little engineering by hand, so it 
can easily take advantage of increases in the amount of available com-
putation and data. New learning algorithms and architectures that are 
currently being developed for deep neural networks will only acceler-
ate this progress. 

Supervised learning 
The most common form of machine learning, deep or not, is super-
vised learning. Imagine that we want to build a system that can classify 
images as containing, say, a house, a car, a person or a pet. We first 
collect a large data set of images of houses, cars, people and pets, each 
labelled with its category. During training, the machine is shown an 
image and produces an output in the form of a vector of scores, one 
for each category. We want the desired category to have the highest 
score of all categories, but this is unlikely to happen before training. 
We compute an objective function that measures the error (or dis-
tance) between the output scores and the desired pattern of scores. The 
machine then modifies its internal adjustable parameters to reduce 
this error. These adjustable parameters, often called weights, are real 
numbers that can be seen as ‘knobs’ that define the input–output func-
tion of the machine. In a typical deep-learning system, there may be 
hundreds of millions of these adjustable weights, and hundreds of 
millions of labelled examples with which to train the machine. 

To properly adjust the weight vector, the learning algorithm com-
putes a gradient vector that, for each weight, indicates by what amount 
the error would increase or decrease if the weight were increased by a 
tiny amount. The weight vector is then adjusted in the opposite direc-
tion to the gradient vector. 

The objective function, averaged over all the training examples, can 

Deep learning allows computational models that are composed of multiple processing layers to learn representations of 
data with multiple levels of abstraction. These methods have dramatically improved the state-of-the-art in speech rec-
ognition, visual object recognition, object detection and many other domains such as drug discovery and genomics. Deep 
learning discovers intricate structure in large data sets by using the backpropagation algorithm to indicate how a machine 
should change its internal parameters that are used to compute the representation in each layer from the representation in 
the previous layer. Deep convolutional nets have brought about breakthroughs in processing images, video, speech and 
audio, whereas recurrent nets have shone light on sequential data such as text and speech. 

Deep learning
Yann LeCun1,2, Yoshua Bengio3 & Geoffrey Hinton4,5
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▶ 表征问题是逻辑启发和神经网络启发的认知范式之间争论
的核心。

▶ 在逻辑启发的范式中，一个符号实例的唯一属性是它与其
他符号实例相同或不同。它没有与它的使用相关的内部结
构；要用符号推理，它们必须绑定到精心选择的推理规则
中的变量。

▶ 相比之下，神经网络只是使用大活动向量、大权重矩阵和
标量非线性来执行快速“直观”推理，支持轻松的常识推
理。

Lecun, Bengio and Hinton, Deep Learning, Nature, Vol.521, 2015
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Hinton的观点
A R T I F I C I A L  I N T E L L I G E N C E

AI pioneer Geoff Hinton: “Deep learning is going to
be able to do everything”
Thirty years ago, Hinton’s belief in neural networks was contrarian. Now it’s hard to
find anyone who disagrees, he says.

By Karen Hao

November 3, 2020

NOAH BERGER / AP

On the AI field’s gaps: "There’s going to have to be quite a few conceptual
breakthroughs...we also need a massive increase in scale."

On neural networks’ weaknesses: "Neural nets are surprisingly good at dealing with a
rather small amount of data, with a huge numbers of parameters, but people are even
better."

On how our brains work: "What’s inside the brain is these big vectors of neural
activity."

The modern AI revolution began during an obscure research contest. It was 2012, the

third year of the annual ImageNet competition, which challenged teams to build

computer vision systems that would recognize 1,000 objects, from animals to

landscapes to people.

There are some people who still believe that symbolic representation is one of the
approaches for AI.
Absolutely. I have good friends like Hector Levesque, who really believes in the

symbolic approach and has done great work in that. I disagree with him, but the

symbolic approach is a perfectly reasonable thing to try. But my guess is in the

end, we’ll realize that symbols just exist out there in the external world, and we

do internal operations on big vectors.

What do you believe to be your most contrarian view on the future of AI?
Well, my problem is I have these contrarian views and then five years later,

they’re mainstream. Most of my contrarian views from the 1980s are now kind of

broadly accepted. It’s quite hard now to find people who disagree with them. So

yeah, I’ve been sort of undermined in my contrarian views.

Hao, K. AI pioneer Geoff Hinton: “Deep learning is going to be able to do everything.”

MIT Technology Review (2020).
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Q: 有些人仍然认为符号表示是人工智能的方法之一。
A: 当然。我有像赫克托·莱维斯克这样的好朋友，他真的相信符号方法，
并在这方面做了很好的工作。

A: 我不同意他的观点，但符号方法是一个完全合理的尝试。
A: 但我的猜测是，最终，我们会意识到符号只是存在于外部世界中，
我们在内部运算时我们只是对大向量进行操作。

Hao, K. AI pioneer Geoff Hinton: “Deep learning is going to be able to do everything.”

MIT Technology Review (2020).
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Marcus和Lecun的辩论

6

Gary Marcus和Yann Lecun的争论

• 2017-10-21 Yann LeCun vs. Gary Marcus
Artificial Intelligence Debate - Does AI Need More Innate Machinery? 

• 2018-01-02 Gary Marcus
Deep Learning:  A Critical Appraisal 

• 2022-03-10 Gary Marcus
Deep Learning Is Hitting a Wall

• 2022-06-16 Jacob Browning and Yann LeCun
What AI Can Tell Us About Intelligence

• 2022-08-11 Gary Marcus
Deep Learning Alone Isn’t Getting Us To Human-Like AI

• 2022-10-17 Gary Marcus
Three baffling claims about AI and machine learning in four days, statistical errors 
in top journals, and claims from Yann LeCun that you should not believe.

8 (1) total: 46



Marcus和Lecun的辩论

2017-10-21 https://www.youtube.com/watch?v=aCCotxqxFsk
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Marcus和Lecun的辩论
Limits on the scope of deep learning:

1. Deep learning thus far is data hungry
2. Deep learning thus far is shallow and has limited capacity for transfer
3. Deep learning thus far has no natural way to deal with hierarchical structure
4. Deep learning thus far has struggled with open-ended inference
5. Deep learning thus far is not sufficiently transparent
6. Deep learning thus far has not been well integrated with prior knowledge
7. Deep learning thus far cannot inherently distinguish causation from correlation
8. Deep learning presumes a largely stable world, in ways that may be

problematic
9. Deep learning thus far works well as an approximation, but its answers often

cannot be fully trusted
10. Deep learning thus far is difficult to engineer with

Gary Marcus, Deep Learning: A Critical Appraisal, 2018-01-02

8 (3) total: 46



Marcus和Lecun的辩论
深度学习的天生缺陷:

1. 深度学习至今缺少足够的数据。
2. 深度学习至今仍不够深入，且在迁移度上存在很大局限。
3. 现在的深度学习并没有能够处理层次化结构的方法。
4. 深度学习至今无法解决开放性的推理问题。
5. 深度学习还不够透明。
6. 深度学习尚未能很好地结合先验知识。
7. 深度学习还无法区分“因果关系”和“相关性”。
8. 深度学习在一个环境稳定的世界里表现最好，然而现实往往并非如此。
9. 当你需要一个近似的结果时，深度学习效果不错，但不能完全信赖这些结果。

10. 深度学习仍很难被工程化。
Gary Marcus, Deep Learning: A Critical Appraisal, 2018-01-02
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Marcus和Lecun的辩论
深度学习撞墙了：
▶ AI领域充满炒作和虚张声势

▶ 一些难题无法解决：放射学、自动驾驶、不良语言和错误信息。
▶ Scaling Law并不是自然定律，而是观察到的现象（类似摩尔定律）。
▶ 深度学习遇到了Scaling Limits（扩展限制）。

▶ 回顾历史，Hinton等深度学习一直在强烈反对符号方法。
▶ 轻视尚未经过充分探索的过时想法是不正确的。

▶ Hinton说得很对，过去人工智能研究人员试图埋葬深度学习。
▶ 但是 Hinton在今天对符号处理做了同样的事情。在我看来，他的对抗损害了这个
领域。

▶ 具有讽刺意味的是，Hinton是 George Boole的玄孙，而 Boolean代数是符号 AI
最基本的工具之一，是以他的名字命名。

▶ 我认为，混合人工智能是最好的方向。
▶ 将神经和符号结合在一起的探索一直都没有停止，而且正在积聚力量。

Gary Marcus, Deep Learning Is Hitting a Wall, 2022-03-10
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Marcus和Lecun的辩论

符号操作是否需要被硬编码，还是可以被学习到？
▶ 深度学习曾经遇到很多很多困难，都被克服了：

▶ 非线性函数、算力不足、标注数据不足
▶ 符号推理？

▶ 问题的核心在于：符号推理是一开始就被硬编码，还是可以通过经验学习得到符号推
理的能力？

▶ 现在的语言模型如GPT-3和LaMDA已经学到了某种符号推理能力，虽然表现还不是很可靠
▶ Marcus假设符号推理能力是全有或者全无的（爬树到不了月球）
▶ Hinton等人认为神经网络不需要符号硬编码也能学习到操作符号的能力
▶ 拒绝将两种模式混合并非草率的，而是基于一个人是否认为符号推理可以学习的哲学性差异。

▶ 人类思想的底层逻辑：符号能力是先天的，还是后天习得的？
▶ 对AI，是押注，还是做空？

▶ 混合模型一直有人在研究，但并没有取得成功。
▶ 相反，深度学习一直在突破。
▶ 深度学习达到上限了吗？

Jacob Browning and Yann LeCun, What AI Can Tell Us About Intelligence, 2022-06-16
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Marcus和Lecun的辩论

仅仅依靠深度学习无法把我们带向像人一样的AI：
▶ Browning & Lecun的文章曲解了我的观点。
▶ 他们实际上已经承认了符号处理的合理性，但开始说符号处理是后天习得的而非与生
俱来的。

▶ 人们真正应该思考和质疑的是深度学习的极限：
▶ 深度学习已经面临原则上的挑战，即组合性、系统性和语言理解问题。
▶ 这类技术缺乏表征因果关系（例如疾病与其症状之间关系）的方法，并且可能在获取抽象概念方面存
在挑战。深度学习没有明显的逻辑推理方式，距离整合抽象知识还有很长的路要走。

▶ 深度学习在符号处理方面取得了一些进展，但还远远不够。
▶ 他们只是用归纳的原理说明深度学习的作用：「由于深度学习已经克服了 1到 N的问题，我们应该相
信它可以克服 N+1的问题」。这种观点说服力很弱。

▶ 简单地扩展（scaling，增加层数和训练数据）是不够的，B&L也承认这一点。

▶ 现在即使是神经网络最狂热的支持者已经认识到符号处理对实现 AI的重要性。

Gary Marcus, Deep Learning Alone Isn’t Getting Us To Human-Like AI, 2022-08-11
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Manning的评论
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Bengio近期的工作

3

SYSTEM 1 VS. SYSTEM 2 COGNITION
2 systems (and categories of cognitive tasks):

System 1
• Intuitive, fast, UNCONSCIOUS, 

non-linguistic, habitual
• Current DL

System 2
• Slow, logical, sequential, CONSCIOUS, 

linguistic, algorithmic, planning, reasoning
• Future DL

Manipulates high-level / 
semantic concepts, which can 

be recombined 
combinatorially

Yoshua Bengio, Deep Learning For System 2 Processing, AAAI’2019 Invited Talk
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Bengio近期的工作

Yoshua Bengio, Reusable Modular and Causal Knowledge Representation for Lifelong Learning, CoLLAs2022 Invited Talk

10 (2) total: 46
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Bengio近期的工作
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Bengio近期的工作

Interpreting the DAG as a flow network

One more visualization:

                           flow = #particles moving through pipes

We want a valid flow, given the rewards (“#particles") of the terminal states
Bentio et al., Flow Network based Generative Models for Non-Iterative Diverse Candidate Generation, slides
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Bengio近期的工作

Yoshua Bengio, Reusable Modular and Causal Knowledge Representation for Lifelong Learning, CoLLAs2022 Invited Talk
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Bengio近期的工作

Yoshua Bengio, Reusable Modular and Causal Knowledge Representation for Lifelong Learning, CoLLAs2022 Invited Talk
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Chomsky对GPT-3的评论
the neural community gives me). His comment on last’s week essay (on Alt
Intelligence), in full, reprinted with his permission:

I did enjoy [your essay], but have my usual qualms.  Take GPT-3 – I’m sure you saw the

lead article in the NYT magazine collapsing in awe about its ability to mimic some
regularities in data.  In fact, its only achievement is to use up a lot of California’s energy. 
You can’t go to a physics conference and say: I’ve got a great theory.  It accounts for
everything and is so simple it can be captured in two words: “Anything goes.”

All known and unknown laws of nature are accommodated, no failures.  Of course,

everything impossible is accommodated also.

That’s GPT-3.  Works as well or better for 45 terabytes of data from impossible languages.

It’s been understood forever that a theory has to answer two kinds of questions: Why this? 
Why not that?

Noam

What is Chomsky on about? To really appreciate where he is coming from, you have

to understand a bit of the history of linguistics, and his own role in developing the
�eld. Before Chomsky, most of what linguists did was to describe language, rather
than to explain it; one might, for example, characterize the grammar of English, or
Japanese, or Swahili, perhaps focusing on some lesser known aspect of their
grammar.

Chomsky found that description, in of itself, dissatisfying, and wanted to ask a
di�erent question: why was human language the way that it is? Why do we speak in
human languages, rather than say programming languages? Why are there
commonalities across many di�erent languages? (Chomsky’s hypothesis: all humans,
regardless of culture, acquire language in way that is governed by universal

grammar.)

It’s one thing, Chomsky argued, to catalog all the world’s �owers, and another to try
to understand what it is about biology that makes us have the �owers that we do have
rather than something entirely di�erent. Same thing with language: catalog, versus
explanation.

Gary Marcus, Noam Chomsky and GPT-3, May 2022
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Chomsky对GPT-3的评论

我确实喜欢（你发来的文章），但我也像往常一样感到不安。

以GPT-3为例——我相信你看到了《纽约时报》杂志的主要文章，对它模仿数据中某
些规律性的能力感到敬畏。事实上，它唯一的成就是消耗了加州的大量能源。

你不能去参加物理会议说：我有一个很好的理论。它解释了一切，而且是如此的简单，
它可以用两个词来概括：“Anything goes.（任何事情都会发生。）”
所有已知和未知的自然规律都被容纳，没有失败。当然，一切不可能的事情也被容纳
了。

那就是GPT-3。即使是来自不可能存在的语言的45TB数据，也一样可以工作，可能还
会更好。

永远应该明白，一个理论必须回答两类问题：为什么是这样？为什么不是那样？

诺姆

Gary Marcus, Noam Chomsky and GPT-3, May 2022
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Yejin Choi的观点

Fire-side Chat with Barbara Grosz and Yejin Choi search lectures, ACL 2022
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神经符号计算简介

有关神经符号计算的争论

神经符号计算的近期进展

神经符号计算路在何方

总结与展望

Content



神经符号计算的近期进展

应用题求解、代码生成和定理证明

搜索、问答和对话

常识推理

图像理解和生成

文本生成（辅助写作）

Content



Generate and Rank

▶ Generator: Finetune BART on MWP seq2seq task

▶ Ranker: Sequence pair classification task
▶ Feed problem into encoder and expression into

decoder
▶ Joint training: Share encoder and decoder

Shen et al., Generate & Rank: A Multi-task Framework for Math Word Problems, in Findings of EMNLP 2021
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Chain-of-thought

Wei, et al. Chain of thought prompting elicits reasoning in large language models. arXiv:2201.11903 (2022).

14 total: 46



Let’s Think Step-by-step

Kojima, et al. Large Language Models are Zero-Shot Reasoners. arXiv:2205.11916 (2022).

15 total: 46



CodeX and Copilot

▶ OpenAI CodeX:
▶ 基于GPT-3开发
▶ 使用了从GitHub获得的海量人工代
码数据

▶ 能够根据自然语言治疗直接编程
▶ CoPilot:

▶ 基于CodeX开发的编程工具插件
▶ 与现有编程工具环境结合，大大提
高了程序员的编程效率

▶ 存在代码侵权等问题

Evaluating Large Language Models Trained on Code

Figure 2. Three example problems from the HumanEval dataset, where the probabilities that a single sample from Codex-12B passes unit
tests are 0.9, 0.17, and 0.005. The prompt provided to the model is shown with a white background, and a successful model-generated
completion is shown in a yellow background. Though not a guarantee for problem novelty, all problems were hand-written and not
programmatically copied from existing sources. Random problems and samples can be found in Appendix B.

passes the unit tests, and the total fraction of problems
solved is reported. However, computing pass@k in this
way can have high variance. Instead, to evaluate pass@k,
we generate n ≥ k samples per task (in this paper, we
use n = 200 and k ≤ 100), count the number of correct
samples c ≤ n which pass unit tests, and calculate the
unbiased estimator

pass@k := E
Problems

[
1−

(
n−c
k

)
(
n
k

)
]

(1)

Calculating this estimator directly results in very large num-
bers and numerical instability. In Figure 3, we include a
numerically stable numpy implementation that simplifies
the expression and evaluates the product term-by-term. One
may be tempted to estimate pass@k with 1−(1− p̂)k where
p̂ is the empirical estimate of pass@1, but we show that it is
biased in Appendix A.

def pass_at_k(n, c, k):
"""
:param n: total number of samples
:param c: number of correct samples
:param k: k in pass@$k$
"""
if n - c < k: return 1.0
return 1.0 - np.prod(1.0 - k /

np.arange(n - c + 1, n + 1))

Figure 3. A numerically stable script for calculating an unbiased
estimate of pass@k.

Later, we provide evidence that BLEU score may not be
a reliable indicator of functional correctness by showing
that functionally inequivalent programs generated by our
model (which are guaranteed to disagree with the reference
solution on some input) often have higher BLEU scores than
functionally equivalent ones.

Chen et al., Evaluating Large Language Models Trained on Code, arXiv:2107.03374 (2021)
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AlphaCode

▶ AlphaCode在号称「全球最强算法
平台」Codeforces上的 5,000名用
户解决的 10项挑战中进行了测试。

▶ AlphaCode能够以与人类完全相同的
格式在这10项挑战中自动输入代码，
生成大量可能的答案，然后像人类程
序员一样通过运行代码和检查筛选出
可行答案

▶ 最终在人类程序员中取得了排名前
54%的好成绩。

▶ 采用Transformer模型
▶ 用GitHub数据预训练，并用竞赛题数
据精调

▶ 每次生成海量代码片段再筛选

▶ 筛选的时候会生成测试样例进行测试

▶ 最好选择最好结果输出。

Li, et al. Competition-level code generation with alphacode. arXiv:2203.07814 (2022).
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AlphaCode
Competition-Level Code Generation with AlphaCode

Figure 4 | Overview of AlphaCode.

Lastly, we filtered out problems in the validation and test splits with insufficient test coverage, keeping
only problems with at least 5 hidden or generated test cases that result in at least 2 different outputs.
This ensures a model cannot trivially solve problems by always outputting a constant, such as YES or
NO. As seen in Table 2, generated tests and filtering reduced our false positive rates from 62% to
4%. CodeContests has significantly better false positive rates than prior work even though we drew
fewer samples for both APPS and HumanEval, and the problems in those datasets are relatively less
complex (both of which tend to lower the false positive rates). However, there is still a significant
number of problems where slow but semantically correct solutions are accepted by the tests.

4. Approach

Generating code that solves a specific task requires searching in a huge structured space of programs
with a very sparse reward signal. To make matters worse, for many domains including competitive
programming, there is a limited number of examples of such tasks and solutions to learn from. Finally,
as we restrict the amount of submissions per problem our model can do, each submission must be
used wisely.

Our system, AlphaCode, is meant to address all these challenges. A high-level view of our approach
can be seen in Figure 4. The main process is to:

1. Pre-train a transformer-based languagemodel on GitHub codewith standard languagemodelling
objectives. This model can reasonably represent the space of human coding, which greatly
reduces the problem search space.

2. Fine-tune the model on our dataset of competitive programming data, using GOLD (Pang and
He, 2020) with tempering (Dabre and Fujita, 2020) as the training objective. This further
reduces the search space, and compensates for the small amount of competitive programming
data by leveraging pre-training.

3. Generate a very large number of samples from our models for each problem.
4. Filter the samples to obtain a small set of candidate submissions (at most 10), to be evaluated

on the hidden test cases, by using the example tests and clustering to pick samples based on
program behaviour.

Among these, the large-scale sampling followed by filtering is unique to our setup, and we found that
this process greatly improves problem solve rate. Therefore many of our design decisions were made
to facilitate efficient and effective sampling.

9

Li, et al. Competition-level code generation with alphacode. arXiv:2203.07814 (2022).
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GPT-f
▶ GPT-f能够发现更短证明，机器证明第
一次被Metamath库收录 (总共23条)

▶ 来自Metamath社区的评价：

▶ 作为辅助证明器 (Proof assistant)
▶ 关键提升点分析

Polu and Sutskever, Generative Language Modeling for Automated Theorem Proving, arXiv:2009.03393 (2020)
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GPT-f
Pre-train + Fine-tune+ Self-Play GPT-based One-step Reasoning Search

Polu and Sutskever, Generative Language Modeling for Automated Theorem Proving, arXiv:2009.03393 (2020)
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WebGPT

▶ 基于GPT-3语言模型
▶ 模拟人类使用搜索引擎回答问题的过程

▶ 收集人类数据，记录人类在问答问题过程中的行为：
▶ 搜索
▶ 点击、浏览（上下滚动屏幕）
▶ 抽取
▶ 撰写答案
▶ 标注来源
▶ 把获得的人类行为数据用于GPT-3精调

Nakano, et al. WebGPT: Browser-assisted question-answering with human feedback. arXiv:2112.09332 (2021)

19 (1) total: 46



WebGPT

Nakano, et al. WebGPT: Browser-assisted question-answering with human feedback. arXiv:2112.09332 (2021)
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WebGPT
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LaMDA

▶ 对话式语言模型

▶ 采用T5模型架构
▶ 1370亿参数
▶ 训练数据1.56万亿单词
▶ 支持多轮对话
▶ 支持调用外部工具：

▶ 搜索引擎
▶ 计算机
▶ 机器翻译

Thoppilan, et al. Lamda: Language models for dialog applications. arXiv:2201.08239 (2022).

20 total: 46



Character.ai

▶ Character.ai是一个角色对话系统，可以模仿一些给定的角色，按照他的语气跟
用户对话，甚至能够让用户自己定义角色。

Character.ai, https://character.ai/

21 (1) total: 46
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InstructGPT and ChatGPT

▶ ChatGPT是OpenAI发布的一个强大的对话模型，一发布就因其强大的对话能力引起轰
动。

▶ 相比于已有的其他对话系统，其强大之处主要体现在：
▶ 能力强大，闲聊、作诗、写代码、翻译，无所不能；
▶ 理解能力强，准确把握用户的意图，能够理解一些潜台词；
▶ 回复贴切，用户关心的点几乎都能回答到，但并不说无关的话；
▶ 语言组织能力强，回复非常有条理；
▶ 有一定的伦理原则，能指出用户错误，或者承认自己错误，并能拒绝一些不合理的要求。

▶ 原理：
▶ 基础模型是GPT3.5。
▶ 采用了InstructGPT模型提出的基于人类反馈的强化学习训练方法，并做了少量调整。
▶ 收集了大量用户聊天数据，并让人按照人类聊天方式标注大量数据，还让用户对系统生成的不同答复
进行评分，用于进行强化学习训练。

Ouyang et al., Training language models to follow instructions with human feedback, arXiv:2203.02155 (2022)
Blog: ChatGPT: Optimizing Language Models for Dialogue, https://openai.com/blog/chatgpt/

22 (1) total: 46
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InstructGPT and ChatGPT

（聊天样例图片来自互联网）

Ouyang et al., Training language models to follow instructions with human feedback, arXiv:2203.02155 (2022)
Blog: ChatGPT: Optimizing Language Models for Dialogue, https://openai.com/blog/chatgpt/

22 (3) total: 46



InstructGPT and ChatGPT

系统不仅能翻译，而且显示出极强的上下文相关性理解能力：

▶ 知道中英文词语之间的对应关系，

▶ 而且最后能把前面所有的要求汇总成一个句子。

Ouyang et al., Training language models to follow instructions with human feedback, arXiv:2203.02155 (2022)
Blog: ChatGPT: Optimizing Language Models for Dialogue, https://openai.com/blog/chatgpt/

22 (4) total: 46
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Abstract

The Winograd Schema Challenge—a set of twin sentences involving pro-
noun reference disambiguation that seem to require the use of commonsense
knowledge—was proposed by Hector Levesque in 2011. By 2019, a number
of AI systems, based on large pre-trained transformer-based language models
and fine-tuned on these kinds of problems, achieved better than 90% accu-
racy. In this paper, we review the history of the Winograd Schema Challenge
and assess its significance.

Keywords: Commonsense Reasoning, Winograd Schema Challenge

1. Introduction

In 2010, Hector Levesque (Levesque, 2011) proposed a new challenge
for artificial intelligence: The Winograd Schema Challenge. The challenge
was named after a well-known example in Terry Winograd’s 1972 ground-
breaking doctoral thesis, Understanding Natural Language. The example
consists of a pair of sentences:

The city councilmen refused the demonstrators a permit because
they feared violence.
The city councilmen refused the demonstrators a permit because
they advocated violence.

Preprint submitted to Artificial Intelligence January 19, 2022Kocijan et al., The Defeat of the Winograd Schema Challenge, arXiv:2201.02387

23 (1) total: 46



Winograd Schema Challenge
1972: Winograd’s (1972) thesis introduces the original example.
2010: Levesque (2011) proposes the Winograd Schema Challenge.
2010–2011: The initial corpus of Winograd schemas is created.
2014: Levesque’s Research Excellence talk “On our best behavior”

(Levesque, 2014).
2016: The Winograd Schema Challenge is run at IJCAI-16. No systems do

much better than chance (Davis et al., 2017b).
2018: WNLI is incorporated in the GLUE set of benchmarks. BERT-based

systems do no better than most-frequent-class guessing
(Wang et al., 2019b).

2019, May: Kocijan et al. (2019b) achieve 72.5% accuracy on WSC273 using
pretraining.

2019, June: Liu et al. (2019) achieve 89.0% on WNLI.
2019, November: Sakaguchi et al. (2020) achieve 90.1% on WSC273.

Table 1: Time line of the Winograd Schema Challenge

In the first sentence, the pronoun “they” in the first sentence is naturally
interpreted as referring to the city councilmen; in the second, it is naturally
interpreted as referring to the demonstrators. The only difference between
the two sentences is that the first has “feared” where the second has “advo-
cated”. Therefore, the different referents chosen for “they” must somehow
reflect that different choice of word. Presumably when humans read the first
sentence, their choice of referent for “they” is guided by their knowledge
that X fearing that Y would be violent would be a reason for X to deny Y a
permit to demonstrate, whereas Y fearing violence would rarely be a reason
for X to deny Y such a permit. Humans’ choice of referent in the second
sentence is likewise guided by their knowledge that Y advocating violence
would be a reason to deny Y a permit to demonstrate whereas X advocating
violence would not be a good reason for X to deny Y a permit to demonstrate.
Knowledge about the attitudes of city councils’ vs. demonstrators’ stereo-
typical attitudes toward (non-state-sanctioned) violence no doubt also plays
a role in the disambiguation. In 1972, and still in 2011, it seemed reasonable
to suppose that an AI that would be able to do this kind of disambiguation
would similarly have to draw on a body of commonsense knowledge.

Levesque therefore proposed to use these kinds of sentences as a test for
the depth of understanding of AI natural language programs. In particu-

2

Kocijan et al., The Defeat of the Winograd Schema Challenge, arXiv:2201.02387
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Maieutic Prompting

Q

ET

True, because
False, because

EF

ETF

Logically Integral

Logically Integral

 : War cannot have a tie?Q

False, because

War cannot have a tie? True, because
In a context of war, there's always a victor and  
a loser.

In a context of war, there's always a victor and  
a loser? False, because

There can be cases where the loser is not clear.

Width-wise spanning

D
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Q

Maieutic tree generation Defining the relations Inference

Q

ET EF

ETF

Figure 2: An overview of MAIEUTIC PROMPTING. Given a question Q, we generate maieutic tree consisting of
abductive and recursive explanations, define the relations between them, and employ MAX-SAT to find the best
truth-value assignments to the explanations and Q.

ING, a novel few-shot inference method that in-
fers a correct answer by enumerating a structure of
explanations — possibly noisy and contradictory
— and resolving them with a symbolic inference
algorithm. Inspired by the maieutic method2 of
Socrates, MAIEUTIC PROMPTING induces the LM
to generate abductive explanations for diverse hy-
potheses with deep recursive reasoning, then col-
lectively eliminates the contradicting candidates,
resulting in consistent answers.

Figure 2 shows the overview of MAIEUTIC

PROMPTING. First, we prompt the LM to abduc-
tively (Peirce, 1974) rationalize both possible an-
swers, True and False, rather than generating a
single explanation and then connecting it to one
of the answer choices. Moreover, we do not ex-
pect the 1-hop explanations to be always correct;
thus, we further validate the LM’s confidence in its
explanations by recursively prompting the model
with its own generation as the question. Our gener-
ation process derives a tree structure of generated
propositions, where one proposition establishes a
logical ground for the correctness of one another.

To infer the answer for the original question, we
quantify the strength of the LM’s belief in each
proposition and the logical relationships between
propositions in the maieutic tree. We then employ
the weighted MAX-SAT (Battiti, 2009) solver to
collectively infer the truth-values of all the propo-
sitions (including the original question) that best
satisfy the set of observed relations. This way, we
symbolically induce the subset of generations that
makes the most probable and consistent inference.
Our proposed method can run completely unsu-
pervised with any few-shot promptable LM (e.g.,
GPT-3; Brown et al., 2020).

2Maieutic method brings out definitions implicit in the
interlocutor’s beliefs, ... is a method of hypothesis elimina-
tion, steadily identifying and eliminating those that lead to
contradictions (Vlastos, 1991).

Our experiments show that the performance of
MAIEUTIC PROMPTING exceeds that of all the few-
shot prompting baselines (e.g., Chain of Thought;
Wei et al., 2022) in three commonsense reason-
ing and fact verification benchmarks. MAIEUTIC

PROMPTING performs up to 20% better than other
prompting methods, and performs on par or even
better than supervised models. Further analyses
show that MAIEUTIC PROMPTING is robust to per-
turbations in both the questions and prompts, and
offers an interpretable interface to understand the
rationale behind the model’s inference.

2 Problem Setup and Background

Our goal is to infer whether a given statement Q
makes sense, i.e. inferring the truth value A of Q.
Conventionally, this can be done through prompt-
ing an LM with the following two methods:

Standard Prompting Let Q be a statement we
want to infer the truth value of (i.e., either True or
False). In standard few-shot prompting, the model-
inferred answer Â is defined as:

Â = argmax
A∈{T,F}

pLM (A|Q,C), (1)

where C = {(q1, a1), · · · , (qk, ak)} denotes the k
examples for in-context learning.

Explanation-based Prompting In explanation-
based prompting, the inference process is factor-
ized into two steps:

Â = argmax
A∈{T,F}

∫

E

pLM (A|Q,E,C) pLM (E|Q,C) (2)

Here, E denotes the explanation generated
prior to inferring the answer label, and C =
{(q1, e1, a1), · · · , (qk, ek, ak)} includes k exam-
ples of questions, explanations and answers. Since
marginalizing over all E is intractable, prior works

 : If you travel west far enough from the 
west coast, you will reach the east cost?
Q

 :You cannot reach the 
east coast by going west.
EF

True, because

False, because

Depth 1 generation

 : The Earth is round and if you travel 
in any direction long enough, you will 
eventually return to where you started.

ET

integral(ET)= 1

integral(EFT)= 1

integral(EF)= 0

Q

ET  : You cannot reach the east 
coast by going west?
EF

 : You can reach the east coast 
by going west by traveling around 
the world.

EFT

 : If you travel in a specific 
straight line, you will eventually 
reach the other side.

EFF

True, because False, because

False, because

integral(EFF)= 0

Q

ET

True, because False, because

EF

True, because

EFT EFF

Logically Integral

Prune non-integral Branch

True, because

Depth 2 generation

Logically Integral

Figure 3: Illustrative example of maieutic tree generation, with the max tree depth set to 2. For visual clarity, we
generate only 1 ET and 1 EF per question and omit the width-wise spanning of knowledge.

LM with the generated explanations. As Figure
2 shows, this corresponds to a depth-wise span-
ning of knowledge that induces a maieutic tree, a
multi-depth structure of generated propositions and
relations between them.

Let Si denote the set of nodes at depth i in the
maieutic tree T . Each node in Si is an explanation
for an answer label (True or False), recursively
generated given its parent node as the question:

Si ⊆
⋃

l∈{T,F}i−1

{ElT , ElF },

(ElT , ElF ) = abduction(El).

(6)

Note that T is a full tree when the equality holds
for all depths. For instance, in Figure 2, ETF is
generated by prompting the LM with its parent
node ET and False, i.e. ETF ∼ pLM (·|ET ,F, C).

In practice, we sample multiple explanations
with the same Q and A through nucleus sampling
(Holtzman et al., 2019). This corresponds to the
width-wise spanning of knowledge, enhancing the
diversity and coverage of generated explanations.

3.1.3 When to Stop Generating
Generating a full tree could be computationally ex-
pensive, as the number of generation grows expo-
nentially with the maximum tree depth. Therefore,
in each branch, we stop generating further once we
reach a logically integral proposition; intuitively,
this aligns with our goal to identify propositions
that can be validated by the LM with confidence.

Figure 3 illustrates an example of maieutic tree
generation where the maximum depth of the tree
is set to 2. For visual clarity, we only generate
one explanation per Q and A. Given Q, we first
generate ET and EF , then validate whether each
of them is logically integral. Since ET is logically
integral, we stop generating in this branch, but con-
tinue generating from EF which is not logically
integral. After reaching the maximum depth, we

prune the branches leading to leaf nodes that are
still not logically integral. This way, the final tree
keeps only the generations that lead to a logically
integral proposition. We provide a formal descrip-
tion of the generation process in Appendix A.

3.2 Defining the Relations
Now that we have generated the maieutic tree, we
seek to define the relations between propositions
and quantify their strength into scalar weights. For
illustration, assume that an LM has generated the
following EF for the given Q:

Q: Captain Kirk is part of Star Wars?
A: False, because Captain Kirk is a
character in Star Trek.

The generation can be logically interpreted as fol-
lows: (1) the LM believes that Captain Kirk is a
character in Star Trek, (2) the LM believes that
the proposition Captain Kirk is a character in Star
Trek can be a reason to deny that Captain Kirk is
part of Star Wars. Accordingly, we define belief
and consistency to represent the two dimensions of
the logical relationship.

Belief wE corresponds to the LM’s belief that the
proposition E is true (and therefore, ¬E is false).
To quantify belief, we prompt the LM with E and
¬E respectively as a question, then comparing the
probability assigned to True:

wE :=
pLM (T |E,C)− pLM (T |¬E,C)

pLM (T |E,C) + pLM (T |¬E,C)
. (7)

Note that calculating this does not require any ad-
ditional prompting, as we already gained access to
these values while checking for the logical integrity
of each proposition.

Consistency wE,Q,A corresponds to the consis-
tency of the generated E with the given Q and
A. Intuitively, if the LM is logically consistent, the

Jung, et al. Maieutic Prompting: Logically Consistent Reasoning with Recursive Explanations. arXiv:2205.11822 (2022)
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Flamingo
Flamingo是一个图文对话系统，可以实现图片和文字混合的理解和对话:

Flamingo: a Visual Language Model for Few-Shot Learning
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❄

…

Output: text

Figure 3 | Overview of the Flamingo model. The Flamingo models are a family of visual language model
(VLM) that can take as input visual data interleaved with text and can produce free-form text as output. Key to
its performance are novel architectural components and pretraining strategies described in Section 3.

3. Approach
This section describes our approach to building the Flamingo model: a visual language model that
accepts text interleaved with images/videos as input and outputs free-form text. Despite its apparent
simplicity, this API is sufficiently expressive to tackle a diverse range of tasks. In particular, it handles
both open-ended tasks such as visual question-answering or captioning, which require generating
text, and close-ended tasks such as classification, which require choosing the best category or answer
amongst a set. Most importantly, it is amenable to few-shot in-context learning where examples of
annotated visual and text pairs are provided in an interleaved prompt to steer the model to a desired
task behavior, without having to change or adapt the model weights (see Section 3.3).

The architectural components shown in Figure 3 are key to the performance of Flamingo models,
and these are chosen according to two objectives. The first objective is to leverage pretrained models
without having to spend compute training them from scratch. On the vision side, we pretrain a
vision encoder with a contrastive text-image approach, à la CLIP (Radford et al., 2021). The role
of this model is to extract semantic spatial features that describe attributes that one would want to
query about a visual datum: color, shape, nature, positions of objects, etc. On the language side,
we start from an existing autoregressive language model (LM) trained on a large and diverse text
corpus (Hoffmann et al., 2022). By doing so, Flamingo models gain strong generative language
abilities and access to a large amount of knowledge stored in the LM weights. The second objective is
to bridge these pretrained models harmoniously. To do so, we freeze the weights of these models
so that their initial capacity remains unchanged. We then link them via two learnable architecture
components. First, the Perceiver Resampler (Section 3.1.1) receives spatio-temporal features from the
Vision Encoder (obtained from either image or video) and outputs a fixed-size set of visual tokens.

9
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Flamingo
Flamingo: a Visual Language Model for Few-Shot Learning

Input Prompt Completion

This is a chinchilla.
They are mainly found

in Chile.

This is a shiba. They
are very popular in

Japan.
This is −→

a flamingo. They are
found in the

Caribbean and South
America.

What is the title of this
painting? Answer: The
Hallucinogenic
Toreador.

Where is this painting
displayed? Answer:
Louvres Museum, Paris.

What is the name of
the city where this was
painted? Answer:

−→ Arles.

Output: "Underground" Output: "Congress" Output: −→ "Soulomes"

2+1=3 5+6=11 −→ 3x6=18

Output: A propaganda
poster depicting a cat
dressed as French
emperor Napoleon
holding a piece of

cheese.

Output: A pink room
with a flamingo pool

float.
Output: −→ A portrait of Salvador

Dali with a robot
head.

Les sanglots longs des
violons de l’automne
blessent mon coeur
d’une langueur
monotone.

Pour qui sont ces
serpents qui sifflent sur

vos têtes?
−→ Je suis un cœur qui

bat pour vous.

pandas: 3 dogs: 2 −→ giraffes: 4

I like reading , my favourite play is
Hamlet. I also like

, my favorite book is −→ Dreams from my
Father.

What happens to the
man after hitting the
ball? Answer:

−→ he falls down.

This is a picture of two teddy
bears on the moon.

What are they doing?

They are having a conversation.

What object are they using?

It looks like a computer.

Is this surprising?

Yes, it is surprising.

Why is this picture surprising
to you?

I think it is surprising because
teddy bears are not usually
found on the moon.

What is the common thing
about these three images?

They are all flamingos.

What is the difference between
these three images?

The first one is a cartoon, the
second one is a real flamingo,
and the third one is a 3D
model of a flamingo.

This is an apple with a sticker
on it.

What does the sticker say?

The sticker says "iPod".

Where is the photo taken?

It looks like it’s taken in a
backyard.

Do you think it is printed or
handwritten?

It looks like it’s handwritten.

What color is the sticker?

It’s white.

Figure 1 | Examples of inputs and outputs obtained from our 80B parameter model, Flamingo. Like
large-scale language models, Flamingo can be rapidly adapted to various image and video understanding tasks
by simply prompting it with a few examples (top). Out of the box, Flamingo is also capable of rich visual
dialogue (bottom). More qualitative examples can be found in Section 5.
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The sticker says "iPod".

Where is the photo taken?

It looks like it’s taken in a
backyard.

Do you think it is printed or
handwritten?

It looks like it’s handwritten.

What color is the sticker?

It’s white.

Figure 1 | Examples of inputs and outputs obtained from our 80B parameter model, Flamingo. Like
large-scale language models, Flamingo can be rapidly adapted to various image and video understanding tasks
by simply prompting it with a few examples (top). Out of the box, Flamingo is also capable of rich visual
dialogue (bottom). More qualitative examples can be found in Section 5.
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Flamingo

Flamingo: a Visual Language Model for Few-Shot Learning
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Output: "Underground" Output: "Congress" Output: −→ "Soulomes"

2+1=3 5+6=11 −→ 3x6=18

Output: A propaganda
poster depicting a cat
dressed as French
emperor Napoleon
holding a piece of

cheese.

Output: A pink room
with a flamingo pool

float.
Output: −→ A portrait of Salvador

Dali with a robot
head.

Les sanglots longs des
violons de l’automne
blessent mon coeur
d’une langueur
monotone.

Pour qui sont ces
serpents qui sifflent sur

vos têtes?
−→ Je suis un cœur qui

bat pour vous.

pandas: 3 dogs: 2 −→ giraffes: 4

I like reading , my favourite play is
Hamlet. I also like

, my favorite book is −→ Dreams from my
Father.

What happens to the
man after hitting the
ball? Answer:

−→ he falls down.

This is a picture of two teddy
bears on the moon.

What are they doing?

They are having a conversation.

What object are they using?

It looks like a computer.

Is this surprising?

Yes, it is surprising.

Why is this picture surprising
to you?

I think it is surprising because
teddy bears are not usually
found on the moon.

What is the common thing
about these three images?

They are all flamingos.

What is the difference between
these three images?

The first one is a cartoon, the
second one is a real flamingo,
and the third one is a 3D
model of a flamingo.

This is an apple with a sticker
on it.

What does the sticker say?

The sticker says "iPod".

Where is the photo taken?

It looks like it’s taken in a
backyard.

Do you think it is printed or
handwritten?

It looks like it’s handwritten.

What color is the sticker?

It’s white.

Figure 1 | Examples of inputs and outputs obtained from our 80B parameter model, Flamingo. Like
large-scale language models, Flamingo can be rapidly adapted to various image and video understanding tasks
by simply prompting it with a few examples (top). Out of the box, Flamingo is also capable of rich visual
dialogue (bottom). More qualitative examples can be found in Section 5.

2

Alayrac et al., Flamingo: a Visual Language Model for Few-Shot Learning, arXiv:2204.14198 (2022)
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Dall E, Stable Diffusion, and etc.

文字到图像生成技术（D2I）近期进展迅速：
▶ 2021-02-26 CLIP：首个图像文本预训练语言模型，主要用于理解任务
▶ 2021-02-26 Dall E：首个文字到图像生成模型，使用了CLIP的预训练表示
▶ 2021-12-22 GLIDE：首次引入扩散模型，大幅度提高了所生成的图像分辨率
▶ 2022-04-13 Dall E2：提高了分辨率，引入了基于文本指令的图像编辑
▶ 2022-04-13 Latent Diffusion：对扩散模型进行了改进，改善了生成效果，降低
了成本

26 (1) total: 46
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Ramesh et al., Zero-Shot Text-to-Image Generation, arXiv:2102.12092

Blog: DALL·E: Creating Images from Text, https://openai.com/blog/dall-e/
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Ramesh et al., Hierarchical Text-Conditional Image Generation with CLIP Latents, arXiv:2204.06125

Blog: DALL·E 2, https://openai.com/dall-e-2/
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Layout to image Object removal

Rombach et al., High-Resolution Image Synthesis with Latent Diffusion Models, arXiv:2112.10752
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An Image is Worth One Word: Personalizing
Text-to-Image Generation using Textual Inversion

Rinon Gal1,2∗ Yuval Alaluf1 Yuval Atzmon2 Or Patashnik1

Amit H. Bermano1 Gal Chechik2 Daniel Cohen-Or1

1Tel-Aviv University 2NVIDIA

Abstract

Text-to-image models offer unprecedented freedom to guide creation through natural lan-
guage. Yet, it is unclear how such freedom can be exercised to generate images of specific
unique concepts, modify their appearance, or compose them in new roles and novel scenes.
In other words, we ask: how can we use language-guided models to turn our cat into a
painting, or imagine a new product based on our favorite toy? Here we present a simple
approach that allows such creative freedom. Using only 3-5 images of a user-provided
concept, like an object or a style, we learn to represent it through new “words” in the
embedding space of a frozen text-to-image model. These “words” can be composed into
natural language sentences, guiding personalized creation in an intuitive way. Notably, we
find evidence that a single word embedding is sufficient for capturing unique and varied
concepts. We compare our approach to a wide range of baselines, and demonstrate that it
can more faithfully portray the concepts across a range of applications and tasks.
Our code, data and new words will be available at: https://textual-inversion.
github.io

→

Input samples invert−−−−→ “S∗” “An oil painting of S∗” “App icon of S∗” “Elmo sitting in
the same pose as S∗” “Crochet S∗”

→

Input samples invert−−−−→ “S∗”
“Painting of two S∗
fishing on a boat” “A S∗ backpack” “Banksy art of S∗” “A S∗ themed lunchbox”

Figure 1: (left) We find new pseudo-words in the embedding space of a pre-trained text-to-image model
which describe specific concepts. (right) These pseudo-words can be composed into new sentences, placing
our targets in new scenes, changing their style or composition, or ingraining them into new products.

Preprint. Under review.
∗ Work was done during an internship at NVIDIA
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Gal et al., An Image is Worth One Word: Personalizing Text-to-Image Generation using Textual Inversion, arXiv:2208.01618

26 (5) total: 46



神经符号计算的近期进展

应用题求解、代码生成和定理证明

搜索、问答和对话

常识推理

图像理解和生成

文本生成（辅助写作）

Content



Galactica

▶ Galactica: 一个可以存储、组合科学知识并利用科学知识进行推理的大型语言
模型。

▶ 在一系列任务上超过现有SotA：
▶ 记住常用公式、和推理、引用预测）
▶ 领域知识问答
▶ 领域推理
▶ 引用预测
▶ 避免有害信息和偏见

▶ 演示网站上线3天后被迫关闭，因为被使用者发现太多问题：
▶ 生成的文本看上去很专业，但包含大量错误，生成的引文很多甚至都是不存在的；

▶ 很多用户都表示担心误用会产生大量不良后果。

Taylor et al., Galactica: A Large Language Model for Science, arXiv:2211.09085

27 (1) total: 46
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Galactica: A Large Language Model for Science

5.2 Knowledge Probes
First, we examine how well Galactica absorbs scientific knowledge. We set up several knowledge probe
benchmarks, building off the LAMA approach of Petroni et al. (2019). These were critical metrics during
model development for identifying knowledge gaps within the corpus, and informing how to iterate the
corpus. They also provide insight into the relative knowledge strengths of Galactica versus general language
models, and we cover these results in this section before turning to the downstream tasks.

5.2.1 LaTeX Equations
We construct a dataset of popular LaTeX equations from the fields of chemistry, physics, mathematics, statistics
and economics. Memorisation of equations is useful to measure as it is necessary for many downstream
tasks; for example, recalling an equation to use as part of an answer to a problem. Unless stated explicitly,
Galactica results are reported as zero-shot. In total there are 434 equations we test for the knowledge probe.
We prompt with an equation name and generate LaTeX. An example is shown in Figure 9.

Prompt

The formula for Bessel’s differential equation is:

Generated Answer

x2
d2y

dx2
+ x

dy

dx
+

(
x2 − α2) y = 0

Figure 9: LaTeX Equations Probe. We prompt for the name of an equation and evaluate whether the
generated LaTeX is correct. We manually evaluate given the possibility of multiple correct answers.

We summarize the results in Table 6. Equation knowledge increases smoothly with scale. Galactica outper-
forms larger language models trained on general corpuses, indicating the value of a curated dataset.

Model Params (bn) Chemistry Maths Physics Stats Econ Overall
OPT 175 34.1% 4.5% 22.9% 1.0% 2.3% 8.9%
BLOOM 176 36.3% 36.1% 6.6% 14.1% 13.6% 21.4%
GPT-3 (text-davinci-002) ? 61.4% 65.4% 41.9% 25.3% 31.8% 49.0%
GAL 125M 0.1 0.0% 0.8% 0.0% 1.0% 0.0% 0.5%
GAL 1.3B 1.3 31.8% 26.3% 23.8% 11.1% 4.6% 20.5%
GAL 6.7B 6.7 43.2% 59.4% 36.2% 29.3% 27.3% 41.7%
GAL 30B 30 63.6% 74.4% 35.2% 40.4% 34.1% 51.5%
GAL 120B 120 79.6% 83.5% 72.4% 52.5% 36.4% 68.2%

Table 6: Results on LaTeX equations. Results are evaluated zero-shot.

5.2.2 Domain Probes
We also set up domain probes to track specialized knowledge for certain fields. We detail these below:

• AminoProbe: a dataset of names, structures and properties of the 20 common amino acids.
• BioLAMA: a dataset of biomedical factual knowledge triples.
• Chemical Reactions: a dataset of chemical reactions.
• Galaxy Clusters: a dataset of galaxy clusters with their constellation classifications.
• Mineral Groups: a dataset of minerals and their mineral group classifications.

In each case, we construct a prompt to test the knowledge. For example, for Chemical Reactions, we ask
Galactica to predict the products of the reaction in the chemical equation LaTeX. We mask out products in
the description so the model is inferring based on the reactants only. An example is shown in Figure 10.

13

Galactica: A Large Language Model for Science

Prompt

Sulfuric acid reacts with sodium chloride, and gives _____ and _____:

\[ \ce{ NaCl + H2SO4 ->

Generated Answer

NaCl + H2SO4 −−→ NaHSO4 + HCl

Figure 10: Chemical Reactions. We prompt based on a description and reactants, and evaluate whether the
generated products are correct.

We report results for these knowledge probes in Table 7.

Model Params (bn) Amino BioLAMA Reactions Clusters Minerals
OPT 175 12.0% 7.1% 12.7% 21.7% 1.6%
BLOOM 176 14.0% 9.7% 22.4% 15.0% 10.3%
GPT-3 (text-davinci-002) ? 14.0% 8.4% 35.1% 20.8% 18.3%
GAL 125M 0.1 12.0% 3.1% 0.3% 6.7% 0.0%
GAL 1.3B 1.3 16.0% 7.2% 14.4% 14.2% 10.3%
GAL 6.7B 6.7 17.0% 7.9% 26.4% 17.5% 8.7%
GAL 30B 30 21.0% 6.9% 36.5% 20.0% 17.5%
GAL 120B 120 21.0% 8.0% 43.1% 24.2% 29.4%

Table 7: Results on Domain Probes. Results are evaluated zero-shot.

We also observe steady scaling behaviour in these knowledge probes, with the exception of BioLAMA which
we suspect reflects zero-shot prompt difficulty for all LLMs. Notably fine-grained factual knowledge, such as
"ConstellationOf(GalaxyCluster)" type-queries seems to scale smoothly with the size of the model.

14
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(a) Kolmogorov-Smirnov Distance (b) Histogram Overlap
Figure 11: Distributional Comparison of Citations. Galactica’s citation distribution approaches the ground
truth with scale. This is seen through a declining KS distance with scale, and increasing histogram overlap.

Prompt

in the BQ literature as, when p is a mixture of Gaussians, the mean element µp is analytically tractable (see
Appendix C). Some other (p, k) pairs that produce analytic mean elements are discussed in [[START_REF] On
the Equivalence between Kernel Quadrature Rules and Random Feature Expansions, Bach[START_REF]].
For this simulation study, we took p(x) to be a 20-component mixture of 2D-Gaussian distributions. Monte Carlo
(MC) is often used for such distributions but has a slow convergence rate in OP (n−1/2). FW and FWLS are
known to converge more quickly and are in this sense preferable to MC [[START_REF]

Prediction

On the Equivalence between Herding and Conditional Gradient Algorithms, Bach

Figure 12: Citation Prompt. An example prompt predicting a citation in-context; from Briol et al. (2015).

5.4.2 Citation Distributional Analysis
We now turn to look at how well Galactica can model the empirical citation distribution. For this analysis
we use the Contextual Citations dataset, where prompts are extracted from a paper by taking the context
before a citation as the prompt. An example prompt with a model prediction is shown overleaf in Figure 12.
We use the in-context citation data to analyse the distributional difference between predicted and ground truth
paper counts. This allows us to assess the model bias towards predicting more popular papers. Specifically,
for each context there is a ground truth and predicted reference. We count the number of times each reference
appears in our corpus. We then compare the distribution of reference counts between the ground truth
references and the predicted references using the Kolmogorov-Smirnov distance (Massey, 1951).
The comparison between the citation count distributions for different model sizes can be seen in Figure 11.
Figure 11a shows the decrease in the Kolmogorov-Smirnov distance between the distribution of ground truth
paper citations and the distribution of predicted papers citations. Figure 11b shows how the distribution of
paper counts for the predicted papers gets closer to the ground truth as the model size grows. At smaller
scales the model is more prone to predicting more popular papers. As the model grows in size this bias
towards predicting popular papers diminishes.

4https://paperswithcode.com
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This is the sequence:

[START_AMINO]MTNIRKNHPLLKTINDAFIDLPTPSNISTWWNFGSLLGACLIIQVLTGLFLAMHYTSDT...[END_AMINO]

### Ground-Truth Description

Component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex) that is
part of the mitochondrial respiratory chain. The b-c1 complex mediates electron transfer from ubiquinol to
cytochrome c. Contributes to the generation of a proton gradient across the mitochondrial membrane that is then
used for ATP synthesis.

### Galactica 120B Predicted Description

Component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex) that
is part of the mitochondrial respiratory chain. The b-c1 complex mediates electron transfer from ubiquinol to
cytochrome c. Contributes to the generation of a proton gradient across the mitochondrial membrane that is then
used for ATP synthesis.

Figure 21: Protein Description Prediction. Example shown is Q7Y8J5 from the PaenSeq holdout, a Cy-
tochrome b protein from a rock hyrax. The closest protein by sequence similarity in the training set is the
O03363 protein, a Cytochrome b protein from a pygmy hippopotamus, with 83% sequence similarity.

6.1 Bias and Stereotypes
For the following evaluations, we investigate Galactica’s ability to detect (and generate) harmful stereotypes
and hate speech, using four widely used benchmarks.

6.1.1 CrowS-Pairs

CrowS-Pairs
Bias type text-davinci-002 OPT 175B Galactica 120B
Race 64.7 68.6 59.9
Socioeconomic 73.8 76.2 65.7
Gender 62.6 65.7 51.9
Disability 76.7 76.7 66.7
Nationality 61.6 62.9 51.6
Sexual-orientation 76.2 78.6 77.4
Physical-appearance 74.6 76.2 58.7
Religion 73.3 68.6 67.6
Age 64.4 67.8 69.0
Overall 67.2 69.5 60.5

Table 19: CrowS-Pairs Results. Galactica demonstrates significantly lower stereotypical bias in all categories
with the exception of sexual orientation and age.

CrowS-Pairs is a collection of 1,508 crowd-sourced pairs of sentences, one which is "more" stereotyping and
one which is "less" stereotyping, and covers nine characteristics (Nangia et al., 2020). These characteristics are
race, religion, socioeconomic status, age, disability, nationality, sexual orientation, physical appearance, and
gender. A language model’s preference for stereotypical content is measured by computing the proportion of
examples in which the "more" stereotypical sentence is preferred (as determined by log likelihood). Higher
scores indicate a more harmfully biased model, whereas an ideal model with no bias would score 50%.
We report results for Galactica and other language models in Table 19. Galactica exhibits significantly lower
stereotypical biases in most categories, with the exception of sexual orientation and age, when compared
to the latest GPT-3 (text-davinci-002) and OPT 175B. Galactica attains a better overall score of 60.5%
compared to the other models. Language models such as OPT use the Pushshift.io Reddit corpus as a
primary data source, which likely leads the model to learn more discriminatory associations (Zhang et al.,

28
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A.8.5 Example Wikipedia Article Written by Galactica

Multi-Head Attention

Multi-Head Attention is an attention mechanism used in the Transformer architecture for neural networks
(Vaswani et al., 2017).

Background

In natural language processing, an attention mechanism is a model that maps a query and a set of key-value pairs
to an output, where the query, keys, values, and output are all vectors. The output is computed as a weighted
sum of the values, where the weight assigned to each value is computed by a compatibility function of the query
with the corresponding key (Vaswani et al., 2017).

The scaled dot-product attention is an attention mechanism used in the Transformer architecture. It is defined
as mapping a query and a set of key-value pairs to an output, where the query, keys, values, and output
are all vectors. The output is computed as a weighted sum of the values, where the weight assigned to
each value is computed by a compatibility function of the query with the corresponding key (Vaswani et al., 2017).

The multi-head attention is an extension of the scaled dot-product attention. The multi-head attention mechanism
is defined as several scaled dot-product attention stacked together, where the input is linearly projected h times
with different, learned linear projections to dk, dk, and dv dimensions, respectively (Vaswani et al., 2017).

Formal definition

Let the query matrix be Q, the key matrix beK, and the value matrix be V . The matrices are of shape dk × dq ,
dk × dk, and dv × dk respectively. The multi-head attention mechanism is defined as:

MultiHead (Q,K, V ) = Concat (head1, . . . ,headh)WO

where:

headi = Attention
(
QWQ

i ,KW
K
i , V WV

i

)

whereWQ
i ,WK

i , andWV
i are the learned linear projections to the dk, dk, and dv dimensions, respectively. WO

is the linear projection from dvh to dv dimensions (Vaswani et al., 2017).

Applications

Multi-head attention is widely used in natural language processing and other domains. For example, in the BERT
model, multi-head attention is used to learn the context-aware representation of the input sequence (Devlin et
al., 2019).

References

1. Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser,
and Illia Polosukhin. “Attention Is All You Need.” ArXiv abs/1706.03762 (2017).
2. Devlin, Jacob, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. “BERT: Pre-Training of Deep Bidirectional
Transformers for Language Understanding.” ArXiv abs/1810.04805 (2019).
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A.8.6 Example Literature Survey Written by Galactica

Self-Supervised Learning, A Survey

Abstract: In this paper we review self-supervised learning, a method of learning features from unlabelled data.
We discuss the historical motivation behind self-supervised learning and review some of the current state of the
art methods. We also look at how self-supervised learning has been used to solve a wide range of problems,
including image classification, object detection, video analysis and robotics. Finally we discuss some of the
challenges and future research directions for self-supervised learning.

1 Introduction

Deep learning has been very successful at solving many problems in machine learning, however these methods
are reliant on large amounts of labelled data. In many real world applications, it is very expensive or impossible
to obtain large amounts of labelled data. Self-supervised learning has emerged as a way of overcoming this issue.

Self-supervised learning is the process of learning a task that can be automatically generated from unlabelled
data. In this way, the data is automatically labelled by exploiting some form of structure in the data. Once the
self-supervised task has been solved, the features learned by the network are used to solve the original task.

In this paper we will discuss the historical motivation behind self-supervised learning and review some of the
current state of the art methods. We will look at how self-supervised learning has been used to solve a wide
range of problems, including image classification, object detection, video analysis and robotics. Finally we will
discuss some of the challenges and future research directions for self-supervised learning.

2 Historical Motivation

The first wave of deep learning was dominated by supervised learning methods. These methods require
large amounts of labelled data, which is very expensive to obtain in many domains. To overcome this issue,
unsupervised learning methods were introduced. These methods don’t require labelled data, and so can be
applied to a wide range of domains. The downside of these methods is that the learned features are not as good
as those learned by supervised learning methods.

To bridge the gap between supervised and unsupervised learning, self-supervised learning was introduced. The
idea is to learn a supervised task from unlabelled data. Once this task has been learned, the features learned can
be transferred to other tasks. The hope is features learned by self-supervised learning will be better than those
learned by unsupervised learning, and that self-supervised learning can be applied to a wide range of domains.

The first method of self-supervised learning was autoencoders (Hinton et al., 1993). Autoencoders are a type of
neural network that learn to reconstruct the input. This can be thought of as learning a self-supervised task of
predicting the input from the input. The features learned by autoencoders have been shown to be useful for
solving other tasks (Hinton et al., 2006).

Another method of self-supervised learning is multi-task learning (Caruana, 2017). In multi-task learning,
multiple tasks are learned simultaneously. The idea is that by learning multiple tasks, the network will learn
better features. In this way, multi-task learning can be thought of as a form of self-supervised learning.

3 Learning Methods
(cont)

3.1 Pretext Tasks

The first method of self-supervised learning that we will discuss is the use of pretext tasks. In this method, a
supervised task is learned from unlabelled data. This task is called a pretext task, and the labels for this task
are automatically generated from the data. Once the pretext task has been learned, the features learned by the
network are used to solve the original task. (cont)
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大语言模型学到了一些符号操纵能力

2022/11/10 10:22 What AI Can Tell Us About Human Intelligence
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hand-craft symbolic reasoning but can instead learn it: Training a
machine on examples of symbols engaging in the right kinds of
reasoning will allow it to be learned as a matter of abstract pattern
completion. In short, the machine can learn to manipulate symbols in
the world, despite not having hand-crafted symbols and symbolic
manipulation rules built in.

Contemporary large language models — such as GPT-3 and LaMDA —
show the potential of this approach. They are capable of impressive
abilities to manipulate symbols, displaying some level of common-
sense reasoning, compositionality, multilingual competency, some
logical and mathematical abilities and even creepy capacities to mimic
the dead. If you’re inclined to take symbolic reasoning as coming in
degrees, this is incredibly exciting.

Become a print subscriber today.

But they do not do so reliably. If you ask DALL-E to create a Roman
sculpture of a bearded, bespectacled philosopher wearing a tropical
shirt, it excels. If you ask it to draw a beagle in a pink harness chasing a
squirrel, sometimes you get a pink beagle or a squirrel wearing a
harness. It does well when it can assign all the properties to a single
object, but it struggles when there are multiple objects and multiple
properties. The attitude of many researchers is that this is a hurdle for
DL — larger for some, smaller for others — on the path to more
human-like intelligence.

“Does symbolic manipulation need to be hard-coded, or can
it be learned?”

However, this is not how Marcus takes it. He broadly assumes symbolic
reasoning is all-or-nothing — since DALL-E doesn’t have symbols and
logical rules underlying its operations, it isn’t actually reasoning with
symbols. Thus, the numerous failures in large language models show

Jacob Browning and Yann LeCun, What AI Can Tell Us About Intelligence, 2022-06-16
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28 total: 46



但大语言模型学到的符号操作能力并不可靠
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hand-craft symbolic reasoning but can instead learn it: Training a
machine on examples of symbols engaging in the right kinds of
reasoning will allow it to be learned as a matter of abstract pattern
completion. In short, the machine can learn to manipulate symbols in
the world, despite not having hand-crafted symbols and symbolic
manipulation rules built in.

Contemporary large language models — such as GPT-3 and LaMDA —
show the potential of this approach. They are capable of impressive
abilities to manipulate symbols, displaying some level of common-
sense reasoning, compositionality, multilingual competency, some
logical and mathematical abilities and even creepy capacities to mimic
the dead. If you’re inclined to take symbolic reasoning as coming in
degrees, this is incredibly exciting.

Become a print subscriber today.

But they do not do so reliably. If you ask DALL-E to create a Roman
sculpture of a bearded, bespectacled philosopher wearing a tropical
shirt, it excels. If you ask it to draw a beagle in a pink harness chasing a
squirrel, sometimes you get a pink beagle or a squirrel wearing a
harness. It does well when it can assign all the properties to a single
object, but it struggles when there are multiple objects and multiple
properties. The attitude of many researchers is that this is a hurdle for
DL — larger for some, smaller for others — on the path to more
human-like intelligence.

“Does symbolic manipulation need to be hard-coded, or can
it be learned?”

However, this is not how Marcus takes it. He broadly assumes symbolic
reasoning is all-or-nothing — since DALL-E doesn’t have symbols and
logical rules underlying its operations, it isn’t actually reasoning with
symbols. Thus, the numerous failures in large language models show

Jacob Browning and Yann LeCun, What AI Can Tell Us About Intelligence, 2022-06-16

如果你让DALL-E制作
一个罗马雕塑，一个
留着胡子、戴着眼镜、
穿着热带衬衫的哲学
家，那它会很出色。
但是如果你让它画一
只戴着粉色皮带的小
猎犬，去追逐一只松
鼠，有时你会得到一
只戴着粉色小猎犬或
松鼠。
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语言模型的预测很多是利用了捷径（Shortcut）

Twin sentences Options (answer)

3 (1)
a The trophy doesn’t fit into the brown suitcase because it’s too large. trophy / suitcase
b The trophy doesn’t fit into the brown suitcase because it’s too small. trophy / suitcase

3 (2)
a Ann asked Mary what time the library closes, because she had forgotten. Ann / Mary
b Ann asked Mary what time the library closes, but she had forgotten. Ann / Mary

7 (3)
a The tree fell down and crashed through the roof of my house. Now, I have to get it removed. tree / roof
b The tree fell down and crashed through the roof of my house. Now, I have to get it repaired. tree / roof

7 (4)
a The lions ate the zebras because they are predators. lions / zebras
b The lions ate the zebras because they are meaty. lions / zebras

Table 1: WSC problems are constructed as pairs (called twin) of nearly identical questions with two answer choices. The
questions include a trigger word that flips the correct answer choice between the questions. Examples (1)-(3) are drawn from
WSC (Levesque, Davis, and Morgenstern 2011) and (4) from DPR (Rahman and Ng 2012)). Examples marked with 7 have
language-based bias that current language models can easily detect. Example (4) is undesirable since the word “predators” is
more often associated with the word “lions”, compared to “zebras”

Furthermore, we also demonstrate that WINOGRANDE
provides transfer learning to other existing WSC and related
benchmarks, achieving new SOTA performances on five of
them, including the original WSC (Levesque, Davis, and
Morgenstern 2011) (→ 90.1%), DPR (Rahman and Ng 2012)
(→ 93.1%), COPA (Roemmele, Bejan, and Gordon 2011)
(→ 90.6%), KnowRef (Emami et al. 2019) (→ 85.6%), and
Winogender (Rudinger et al. 2018) (→ 97.1%).

Although the improvements of SOTA over multiple chal-
lenging benchmarks are exciting, we cautiously note that
these positive results must be taken with a grain of salt. The
result might also indicate the extent to which spurious ef-
fects are prevalent in existing datasets, which runs the risk of
overestimating the true capabilities of machine intelligence
on commonsense reasoning. More generally, human-crafted
problems and tasks (regardless of whether they are crowd-
sourced or by experts) contains annotation artifacts in many
cases, and algorithmic bias reduction such as AFLITE is
essential to mitigate such dataset-specific bias.

2 Crowdsourcing WINOGRANDE at Scale
WSC problems have been considered challenging to craft by
crowdsourcing due to the structural constraints of twins and
the requirement of linguistic knowledge (Table 1). Neverthe-
less, we present an effective approach to creating a large-scale
dataset (WINOGRANDE) of WSC problems while maintain-
ing its original properties – i.e. trivial for humans but hard for
AI systems. Our approach consists of a carefully designed
crowdsourcing task followed by a novel adversarial filtering
algorithm (§3) that systematically removes biases in the data.

Enhancing Crowd Creativity Creating twin sentences
from scratch puts a high cognitive load on crowd workers
who thereby subconsciously resort to writing pairs that are
lexically and stylistically repetitive. To encourage creativity
and reduce their cognitive load, we employed creativity from
constraints (Stokes 2005) – a psychological notion which
suggests that appropriate constraints can help structure and
drive creativity. In practice, crowd workers are primed by a
randomly chosen topic as a suggestive context (details be-
low), while they are asked to follow precise guidelines on the
structure of the curated data.

Crowdsourcing Task We collect WINOGRANDE problems
via crowdsourcing on Amazon Mechanical Turk (AMT).2
Workers are asked to write twins sentences (as shown in Ta-
ble 1) that meet the requirements for WSC problems (e.g.,
avoiding word association, non-zero but small edit distance).
To avoid repeating the same topics, workers were instructed
to randomly pick an anchor word(s) from a randomly as-
signed WikiHow article3 and to ensure that the twin sen-
tences contain the anchor word. The anchor word does not
have to be a trigger word, but we ensured that it is not a
function word such as the, it, he, of. In our pilot experiments,
we found that this constraint drastically improves worker’s
creativity and diversity of topics. Additionally, workers were
instructed to keep twin sentence length in between 15 and 30
words while maintaining at least 70% word overlap between
a pair of twins.4 Following the original WSC problems, we
aimed to collect twins in two different domains – (i) social
commonsense: a situation involving two same gender people
with contrasting attributes, emotions, social roles, etc., and
(ii) physical commonsense: a context involving two physical
objects with contrasting properties, usage, locations, etc. In
total, we collected 77k questions (i.e., 38k twins).

Data Validation We validate each collected question
through a distinct set of three crowd workers. Following a rig-
orous process, a question is deemed valid if (1) the majority
of the three workers chooses the correct answer option, (2)
they agree that the two answer options are unambiguous (one
option is clearly more plausible than the other) and (3) the
question cannot be answered simply by word association in
which local context around the target pronoun is given (e.g.,
“because it was going so fast.” (race car / school bus)).5 As a
result, 68% of the questions (53k) were deemed valid and we
discarded the invalid questions.

While our crowdsourcing procedure addresses some
amount of instance-level biases like word association, it is

2Our datasets, crowdsourcing interface, and models are available
at http://winogrande.allenai.org.

3https://www.wikihow.com/Special:Randomizer
4The workers met minimum qualification in AMT: 99% ap-

proval rate, 5k approvals. The reward was $0.4 per twin sentences.
5For each sentence validation, workers were paid $0.03.

Sakaguchi et al., WINOGRANDE: An Adversarial Winograd Schema Challenge at Scale,

Communications of the ACM, 2021, 64(9): 99-106
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语言模型需要大量的重复才能记住一个知识点
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Abstract

The internet contains a wealth of knowledge—
from the birthdays of historical figures to tu-
torials on how to code—all of which may be
learned by language models. However, there
is a huge variability in the number of times
a given piece of information appears on the
web. In this paper, we study the relationship
between the knowledge memorized by large
language models and the information in their
pre-training datasets. In particular, we show
that a language model’s ability to answer a
fact-based question relates to how many docu-
ments associated with that question were seen
during pre-training. We identify these rele-
vant documents by entity linking pre-training
datasets and counting documents that contain
the same entities as a given question-answer
pair. Our results demonstrate strong correla-
tional and causal relationships between accu-
racy and relevant document count for numer-
ous question answering datasets (e.g., Trivi-
aQA), pre-training corpora (e.g., ROOTS), and
model sizes (e.g., 176B parameters). More-
over, we find that while larger models are bet-
ter at learning long-tail knowledge, we esti-
mate that today’s models must be scaled by
many orders of magnitude to reach competi-
tive QA performance on questions with little
support in the pre-training data. Finally, we
show that retrieval-augmentation can reduce
the dependence on relevant document count,
presenting a promising approach for capturing
the long-tail.

1 Introduction

Large language models (LLMs) trained on text
from the internet capture many facts about the
world, ranging from well-known factoids to es-
oteric domain-specific information. These mod-
els implicitly store knowledge in their parameters
(Petroni et al., 2019; Roberts et al., 2020), and
given the scale of today’s pre-training datasets
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Figure 1: Language models struggle to capture the
long-tail of information on the web. Above, we plot
accuracy for the BLOOM model family on TriviaQA
as a function of how many documents in the model’s
pre-training data are relevant to each question.

and LLMs, one would hope that they can learn
a huge amount of information from web-sourced
text. However, not all of the knowledge on the in-
ternet appears equally often—there is a long-tail of
information that appears rarely or only once.

In this work, we explore the relationship between
the knowledge learned by an LLM and the infor-
mation in its pre-training dataset. Specifically, we
study how an LLM’s ability to answer a question
relates to how many documents associated with
that question were seen during pre-training. We
focus on factoid QA datasets (Joshi et al., 2017;
Kwiatkowski et al., 2019), which lets us ground
question-answer pairs into concrete subject-object
co-occurences. For example, we consider docu-
ments where the entities Dante and Florence co-
occur as highly relevant to the QA pair (In what
city was the poet Dante born?, Florence). We
identify these entity co-occurrences using a highly-
parallelized entity linking pipeline, which we ap-
ply to trillions of tokens from datasets such as
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particular QA pair. For instance, consider the QA
pair (William Van Allan designed which New York
building—the tallest brick building in the world
in 1930?, Chrysler Building). The documents that
we identify may (1) contain enough information
to correctly answer this question, (2) contain infor-
mation relevant to this question but not enough to
correctly answer it, or (3) contain no relevant in-
formation. For example, a document that mentions
the Chrysler building was designed by William Van
Allan, but not that it was the tallest brick building
in 1930, would fall into the second category.

We randomly chose 300 QA pairs from Trivi-
aQA and for each one select one of their relevant
documents at random. We then manually labeled
the documents into one of the three categories. We
find that 33% of documents contained enough in-
formation to correctly answer the question and an
additional 27% of contain some relevant informa-
tion. Thus, our pipeline has ∼60% precision at
identifying relevant documents for TriviaQA.

This pipeline is far from perfect precision as (1)
the entity linker sometimes mis-identifies entities
and (2) not all documents containing the salient
question and answer entity are actually relevant.
However, when applied at the scale of large-scale
pre-training datasets, this pipeline is efficient and
achieves enough precision and recall to observe
correlational (Section 3.1) and causal (Section 3.2)
relationships to QA performance.

3 LM Accuracy Depends on Relevant
Document Count

In this section, we measure the relationship be-
tween an LLM’s ability to answer a question
and the number of relevant documents in the pre-
training corpus. We use popular Transformer
decoder-only LMs (Vaswani et al., 2017) that span
three orders of magnitude in size:

• GPT-Neo: The GPT-Neo, GPT-NeoX, and GPT-
J LMs trained by EleutherAI on the Pile (Gao
et al., 2020) that range in size from 125M to
20B parameters (Black et al., 2021; Wang and
Komatsuzaki, 2021; Black et al., 2022). We refer
to these models collectively as GPT-Neo models.

• BLOOM: Models trained by the BigScience ini-
tiative on the ROOTS dataset (Scao et al., 2022).
The BLOOM models are multi-lingual; we ana-
lyze their English performance only. The models
range in size from 560M to 176B parameters.
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Figure 3: We plot accuracy on TriviaQA versus rele-
vant document count for GPT-Neo. The trends match
those seen for BLOOM (Figure 1). We also include a
histogram that shows how many QA examples fall into
each bucket; TriviaQA often asks about knowledge rep-
resented 102 to 105 times in the pre-training data.

• GPT-3: Models trained by OpenAI that range in
size from ∼350M (Ada) to ∼175B parameters
(Davinci). Since the pre-training data for these
models is not public, we estimate relevant docu-
ment counts by scaling up the counts from Open-
WebText to simulate if the dataset was the same
size as GPT-3’s pre-training data. We recognize
that there is uncertainty around these models’ pre-
training data, their exact sizes, and whether they
have been fine-tuned. We therefore report these
results in the Appendix for readers to interpret
with these sources of error in mind.

We use these LMs because (with the exception of
GPT-3) they are the largest open-source models for
which the pre-training data is publicly available.
We focus on 4-shot evaluation, although we found
that other amounts of in-context training examples
produced similar trends. We use simple prompts
consisting of templates of the form Q: [Question]
\n A: [Answer]. We generate answers by greedy
decoding until the models generate a newline char-
acter, and we evaluate answers using the standard
Exatch Match (EM) metric against the ground-truth
answer set (Rajpurkar et al., 2016).

3.1 Correlational Analysis

We first evaluate the BLOOM and GPT-Neo model
families on TriviaQA and plot their QA accuracies
versus the number of relevant documents in Fig-

Kandpal et al., Large Language Models Struggle to Learn Long-Tail Knowledge, arXiv:2211.08411

31 total: 46



语言模型对长尾知识表现较差：红楼梦测试
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语言模型对长尾知识表现较差：红楼梦测试
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语言模型并没有掌握常识

不会简单计数、不知道什么叫分类 不会简单计数、不知道时令特点

33 (1) total: 46



语言模型并没有掌握常识

三文鱼在水中游 俄罗斯军舰

33 (2) total: 46



语言模型并没有学到伦理规则

▶ 这一页是草稿

▶ 贾宝玉娶贾母的例子：chatgpt-err-jiabaoyujiamu.png
▶ 类似毁灭世界计划的禁忌很容易被绕过
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语言模型无法区分事实与非事实

▶ 这一页是草稿

▶ 语言模型不知道自己说的话是否有依据（所有训练文本都变成了参数）

▶ 语言模型甚至无法区分基于事实的合理推理和偏离事实的臆想（hallucination）

▶ stack overflow已经禁止使用chatgpt生成的代码
▶ 假的东西编的越像，危害越大
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神经符号计算路在何方

大语言模型并没有真正学到符号操纵的能力

现有符号方法的严重缺陷

神经方法和符号方法结合的路径分析

Content



现有知识图谱覆盖面严重不足

▶ 偏重实体，事件覆盖率太低
▶ 关羽：温酒斩华雄、水淹七军
▶ 红楼：宝黛之恋

▶ 偏重二元关系（三元组），复杂场景知识不足
▶ 中秋：月亮应该是圆的，人们会吃月饼
▶ 时令：每个季节有时令特色（比如菊花只在秋天开放）

▶ 事件发展的因果关系不足
▶ 相关工作：Emtailment Graph（Mark Steedman），ASER（宋阳秋）
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现有符号方法描述能力严重不足

▶ 缺乏对矛盾（否定、反义、互斥）关系的表示和推理能力
▶ 如果前面说了“A是个女性”，后面就不应该出现“A娶了妻子”
▶ 中秋月亮是圆的，就不应该出现“月如钩”

▶ 缺乏基本的集合关系、数量关系理解和推理能力
▶ 下面这个例子，现在的符号方法也没有简单的工具实现这个推理：
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现有符号方法对歧义的兼容能力严重不足

▶ 真实语言是存在大量歧义的，人类大脑可以理解并接受这种歧义的存在，不会
过早做出判断：
▶ 我买了个苹果。（水果？or电脑？）
▶ 南京市长江大桥。（南京市长江大桥 or南京市长江大桥）

▶ 现有符号表示方法大都是确定性的，对保持歧义的表示方法重视严重不足
▶ 贝叶斯网络（适合表示因果推断，跟NLP结合不多）
▶ 马尔科夫逻辑网络（过于复杂）
▶ 语言压缩结构（网格Latice、超图Hypergraph）（适合语言表示，但现在很少研
究）

▶ 在构建数据集和Benchmark的时候，通常要求标注者的一致性（IAA）较高才
予以标注，忽略了语言事实中大量的天然歧义。

▶ 神经网络是天然允许歧义的，这是其对于符号方法的巨大优势。
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现有符号方法对歧义的兼容能力严重不足

(a)
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(b)
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P1,2 NPB2,3

VPB3,6
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(c)

translation hyperedge translation rule
e1 r1 IP(x1:NPBx2:VP)→ x1 x2

e2 r6 IP(x1:NPx2:VPB)→ x1 x2

e3 r3 VP(PP(P(yǔ) x1:NPB) VPB(VV(jǔx́ıng) AS(le) x2:NPB))→ heldx2 with x1

e4 r7 VP(PP(P(yǔ) x1:NPB)x2:VPB)→ x2 with x1

e5 r8 NP(x1:NPB CC(yǔ) x2:NPB)→ x1 andx2

e6 r9 VPB(VV(jǔx́ıng) AS(le) x1:NPB)→ heldx1

Figure 3: (a) the parse forest of the example sentence; solidhyperedges denote the 1-best parse in Figure 2(b) while
dashed hyperedges denote the alternative parse due to Deduction (*). (b) the corresponding translation forest after
applying the translation rules (lexical rules not shown); the derivation shown in bold solid lines (e1 ande3) corresponds
to the derivation in Figure 2; the one shown in dashed lines (e2, e5, ande6) uses the alternative parse and corresponds
to the translation in Example (3). (c) the correspondence between translation hyperedges and translation rules.

parse forest, and try to pattern-match each transla-
tion ruler against the local sub-forest under nodev.
For example, in Figure 3(a), at node VP1,6, two rules
r3 andr7 both matches the local subforest, and will
thus generate twotranslation hyperedgese3 ande4

(see Figure 3(b-c)).

More formally, we define a functionmatch(r, v)
which attempts to pattern-match ruler at nodev in
the parse forest, and in case of success, returns a
list of descendent nodes ofv that are matched to the
variables inr, or returns an empty list if the match
fails. Note that this procedure is recursive and may

195

Mi et al., Forest-Based Translation, ACL 2008
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现有符号方法缺乏从海量数据中学习的能力

▶ 相比于神经网络方法，现有符号方法严重缺乏scaling-up的能力，
▶ 统计机器翻译可以从海量的双语数据中学习翻译知识，但性能比神经网络有较大
差距。

▶ 其他符号化NLP方法很少能够从海量数据中学习知识。
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神经符号计算路在何方

大语言模型并没有真正学到符号操纵的能力

现有符号方法的严重缺陷

神经方法和符号方法结合的路径分析

Content



路径一：一种通用的神经符号系统结构（松散耦合）

Neural System

Perceptual Data
Symbols Data

Symbolic System

Symbol Data

Symbols Data

▶ 目前成功的系统基本都可以归入这一结构的某种变化形式。

▶ 也是现有争论双方都可以接受的路径。

▶ 但目前的方法中，符号系统这一段明显偏弱（见前述分析），急需大大加强。
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目前成功的系统基本都可以归入这一结构的某种变化形式
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作为神经系统和符号系统桥梁的表示形式

▶ 这一页是草稿

▶ 目前主流：文本序列（分析优势和劣势）、形式预计（代码、逻辑表达式）

▶ 可能的其他方式：图结构、带概率的压缩结构
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反馈机制

▶ 这一页是草稿

▶ 强化学习、人机交互
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路径二：将符号部件嵌入神经网络（紧耦合）

Symbolic Neural Symbolic 

Neural SystemsSymbolic Data Symbolic Data

Symbolic[Neural]

Neural[Symbolic]

Neural System

Symbolic

Component

Symbolic

Component

Symbolic System

Neural

Component

Neural

Component

Neural|Symbolic 

Neural SystemPerceptual Data
Symbols and

Relations
Symbolic System

Neural_{Symbolic}

Symbols

Rules
Neural SystemConvert

Neural:Symbolic->Neural

Training

Data
Neural SystemTrain

Symbolic Reasoning

 System

▶ 目前以Hinton、Lecun为首的深度学习阵营强烈反对的结合方式。
▶ 目前比较弱势，但仍然有研究：

▶ 打开神经网络的黑盒，可以获得更好的可解释性；
▶ 重要的概念（或实体），可以在神经网络中直接植入一个神经元。
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路径二：将符号部件嵌入神经网络（紧耦合）
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Abstract

Large-scale pretrained language models are
surprisingly good at recalling factual knowl-
edge presented in the training corpus (Petroni
et al., 2019; Jiang et al., 2020b). In this pa-
per, we present preliminary studies on how fac-
tual knowledge is stored in pretrained Trans-
formers by introducing the concept of knowl-
edge neurons. Specifically, we examine the
fill-in-the-blank cloze task for BERT. Given
a relational fact, we propose a knowledge at-
tribution method to identify the neurons that
express the fact. We find that the activation
of such knowledge neurons is positively cor-
related to the expression of their correspond-
ing facts. In our case studies, we attempt to
leverage knowledge neurons to edit (such as
update, and erase) specific factual knowledge
without fine-tuning. Our results shed light
on understanding the storage of knowledge
within pretrained Transformers. The code
is available at https://github.com/
Hunter-DDM/knowledge-neurons.

1 Introduction

Large-scale pretrained Transformers (Devlin et al.,
2019; Liu et al., 2019; Dong et al., 2019; Clark
et al., 2020; Bao et al., 2020) are usually learned
with a language modeling objective on large-scale
corpora, such as Wikipedia, where exists oceans
of factual knowledge. Pretrained language models
naturally play as a free-text knowledge base by pre-
dicting texts (Bosselut et al., 2019). Petroni et al.
(2019) and Jiang et al. (2020b) probe factual knowl-
edge stored in pretrained language models by fill-
in-the-blank cloze queries. The evaluation shows
that pretrained Transformers have a strong ability
to recall factual knowledge without any fine-tuning.
Roberts et al. (2020) use closed-book question an-
swering to show that the larger a model is, the more
knowledge it can store. However, most previous
work focuses on evaluating the overall accuracy of

∗Contribution during internship at Microsoft Research.
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Figure 1: Through knowledge attribution, we identify
knowledge neurons that express a relational fact.

text-form knowledge prediction. In this paper, we
attempt to look deeper into pretrained Transformers
and investigate how factual knowledge is stored.

As shown in Figure 1, we propose a knowl-
edge attribution method to identify the neurons
that express a relational fact, where such neurons
are named knowledge neurons. Specifically, we
view feed-forward network (i.e., two-layer percep-
tron) modules in Transformer as key-value memo-
ries (Geva et al., 2020). For the example in Figure 1,
the hidden state is fed into the first linear layer
and activates knowledge neurons; then, the second
linear layer integrates the corresponding memory
vectors. The key-value-memory nature (Geva et al.,
2020) inspires us to propose the knowledge attribu-
tion method, which identifies knowledge neurons
in feed-forward networks by computing the contri-
bution of each neuron to the knowledge prediction.

Extensive analysis shows that the activation of
the identified knowledge neurons is positively cor-
related to the knowledge expression, which shows
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总结与展望

▶ 目前神经符号方法取得主要进展采用的是松散结合的模式，但两方并不均衡，
神经网络非常强大，符号系统能力偏弱。

▶ 目前的神经网络处理符号的能力主要还是依靠大数据模拟，并没有学到真正的
符号处理能力，在数据覆盖不足的时候（长尾端）符号处理能力明显不足。

▶ 但目前的符号方法也有着明显的缺陷，在覆盖率、表达能力、可扩展性方面都
急需改进。

▶ 神经符号结合有松散耦合和紧耦合两种路径，目前前者占优，但后者也有优
势，都值得研究。
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Thank you!
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